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Abstract—Traditional hybrid video coding framework using
block based predictive coding and transform coding, such as
the High Efficiency Video Coding (HEVC), cannot further dig
out the redundancy remained in quantized transformed residual,
causing extra bits consumption. Measured by rate-distortion (R-
D) performance, the problem of higher bits consuming can be
solved reversely by video quality enhancing. In this work, we
proposed a video coding scheme that solve the problem by
enhancing the reconstructed video quality using supplementary
information from further compressed quantization error. Aim-
ing at better R-D performance for near-lossless video coding,
we propose a novel video coding scheme using a two-stage
framework that extracts quantization error as complementary
information which is compressed using dictionary learning and
sparse representation. The employed over-complete dictionary
is learned through K-SVD with orthogonal matching pursuit
(OMP) for sparse representation. Statistically redundancy is
further removed by a modified context-adaptive binary arithmetic
coding (CABAC) with adaptive context models. This approach
not only retains the advantages of the traditionally encoder for
lossy compression but also exploits the redundancy in the quan-
tization error to achieve high-quality near-lossless compression.
Experimental results demonstrate that our method significantly
outperforms traditional HEVC lossy encoder with over -20%
BD-BR on average at high bitrate range for near-lossless coding,
while the method is also proved to be efficient at low bitrate range
achieving over -50% BD-BR on average with average PSNR over
41dB, which retains near-lossless performance.

I. INTRODUCTION

Nowadays, the market share of the HEVC [1] is still rising
with its ability to efficiently compress high-quality videos
including 4K and 8K ultra-high-definition (UHD) videos.
Besides the pursuits for higher resolution, lossless and near-
lossless compression that provides higher data security and bet-
ter quality have become a trend in recent years. Near-lossless
video compression aims to preserve a significant amount of
detail such that the loss of information is imperceptible to
the human eye. Near-lossless compression offers a balanced
trade-off between video bitrate and quality than fully lossless
encoding and common lossy encoding in many applications
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such as medical video compression and surveillance video
compression. However, most of the coding tools in HEVC
are geared towards lossy compression. Merely using lower
quantization parameters to achieve near-lossless compression
often fails to fully leverage the encoder’s potential for effective
compression. There is still substantial room for improvement
in optimizing near-lossless compression.

To ensure compression efficiency while preserving image
details as much as possible, near-lossless compression was
introduced and applied early on in JPEG-LS [2]. Subsequently,
various near-lossless compression algorithms such as [3], [4]
are incorporated into video encoding. Both approaches aim
at video compression at high bitrate range. The former uses
an adaptive strategy to select the optimal prediction algorithm
to achieve smaller residuals, while the latter optimizes the
quantization scheme at high bitrate range to achieve better
compression results. While these methods attempt to modify
traditional video encoders, we propose an optimization ap-
proach using a two-stage framework. This encoding process
framework aims to enhance the encoder’s efficiency while
preserving its inherent advantages, allowing for flexible ad-
justments in compression rate. Moreover, the context models
in context-adaptive binary arithmetic coding (CABAC) adopted
in standard video encoder are not designed for lossless or near-
lossless compressed data, causing reduced coding efficiency.

In addition to direct improvements to the encoder, an-
other approach to lossless and near-lossless video compression
adopts two-stage frameworks [5]–[8]. The two-stage frame-
work decomposes video encoding process into two parts in-
cluding a lossy compression stage and an subsequent error
components compression stage. Heindel et al. [8] modified
the two-stage encoding framework for near-lossless video
compression. Bai et al. [9] introduced a learning-based coding
strategy into the two-stage framework for near-lossless en-
coding. Both approaches have demonstrated the efficiency of
the two-stage framework in near-lossless compression. Addi-
tionally, scalable video coding framework [7] with base-layer
and enhancement-layer is considered as a two-stage coding
framework. However, these approaches have not employed
entropy encoder specifically designed according to the statistic



characteristics of the error components in the second encoding
stage, and hence statistical redundancy has not been efficiently
removed.

To address the aforementioned drawbacks of current meth-
ods, we propose a video coding scheme operates within a two-
stage framework, employing dictionary learning and sparse
representation to compress the residuals, followed by an specif-
ically designed entropy encoder adapting the characteristics
of sparse represented residual. The proposed modified two-
stage framework retains efficiency of the standard lossy video
encoder in the first stage, while the second stage leverages
difference between original frame and reconstruction frames
as complementary information to enhance the quality of recon-
struction frame consuming small extra bits. And hence, better
rate-distortion (R-D) performance is achieved. Additionally,
the complementary information in the second stage is sparse
represented using an patch-size adaptive dictionary learning
method to characterize various distribution features of residuals
at different bitrate. Finally, the sparse coefficients are entropy
encoded using a modified CABAC-based entropy encoder with
specificlly designed context models. The proposed scheme
achieves significant coding efficiency gain for near-lossless
coding scenario at high bitrate range, while the scheme out-
performs standard lossy video encoder at lower birate range.

The remainder of the paper is organized as follows. Section
II introduces the dictionary learning and sparse representation
methods used. Section III describes the proposed framework
and entropy encoding strategy. Section IV presents the exper-
imental results. Section V concludes the paper.

II. PROBLEM FORMULATION OF R-D OPTIMIZED
TWO-STAGE NEAR-LOSSLESS VIDEO CODING

The proposed two-stage encoding framework is shown in
Fig.1. We denote the original current frame as x. And the
reconstructed version of x from the first stage is denoted as x̂.
The difference between x and x̂ is denoted as r. And we have

r = x− x̂ (1)

which is adopted as complementary information to enhance the
quality of final reconstructed frame x̂′. To reduce the extra bit
consumption, r is sparse represented and entropy coded in the
second stage. The reconstructed complementary information
from the second stage is denoted as r̂. The final reconstructed
frame x̂′ is obtained as follows.

x̂′ = x̂+ r̂ (2)

With equation (1) and (2), the final reconstruction error e is
obtained as follows.

e = x− x̂′ = r − r̂ (3)

Without using quantization as traditional lossy compression,
the compression method adopted in the second stage controls
R-D trade-off by sparsity setting, which can introduce very
limited distortion. Therefore, |e| is much smaller than |r|
leading to better reconstruction quality and near-lossless com-
pression performance. To be noticed, r is the reconstruction

error of traditional video encoder. The encoding distortion
D of traditional video encoder is the variance of r, which
is denoted as σ2

r . While the encoding distortion D′ of the
proposed two-stage encoding framework is the variance of
e, which is denoted as σ2

e . The distortion difference can be
considered as quality improvement. We assume e and r are of
zero mean. We have

∆D = D − D
′
= σ

2
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Under near-lossless coding scenario, E(e2) as the final
reconstruction error of the two-stage coding scheme is small.
By carefully adjusting the sparsity of sparse represented coef-
ficients, we can always obtain E(e2) smaller than E(r2) and
hence ∆D ≥ 0.

By employing the widely used logarithmic R-D model R =
α·log2 σ2

D [10], the D-R model for the traditional video encoder
is as follows.

D =
σ2

2
R
α

(5)

in which σ2 is the quantized transformed coefficients of pre-
dictive residual before entropy coding. For easy comparison,
we assuming the first stage of the proposed scheme using the
same coding parameters set as standard video encoder, and
hence the first stage has the same R-D characteristic as in (5).
And the R-D characteristics of second stage in the proposed
two-stage encoding framework is modeled as follows.

D′ =
σ′2

2
R′
α

(6)

where σ′2 is the variance of the processed input difference from
first stage before entropy coding. R′ is the extra bits consumed
in the second stage. We formulate the two-stage video coding
as maximize the quality difference with given extra bits budget
using the two-stage framework compared with the traditional
standard encoder.

max
θ

∆D s.t. ∆R ≤ RT (7)

where ∆D is the improved quality by introducing the com-
plimentary information in the second stage as in (4). θ is the
coding parameter sets. And RT is the target extra bit budget.
With the first stage encoder the same as the comparative stan-
dard encoder and D is considered as a constant, maximizing
the distortion difference is equivalent to minimizing the final
reconstruction distortion D′. Additionally, ∆R is the extra bits
cost in the two-stage framework, which is R′ if we use the
same encoder in the first stage as the standard encoder. From
(6), we can find that minimizing D′ is equivalent to minimizing
σ′2. Finally, the problem is simplified as

min
θ

σ′2 s.t. R′ ≤ RT (8)



Fig. 1. The framework of proposed dictionary learning based two-stage video compress scheme

Since the input data of the second stage encoder r in (1)
is the different between the original frame and reconstructed
frame of the first stage, which is the quantization error.
Under video coding scenario, quantization error is not fully
decorrelated and contains structural information of original
frame as shown in Fig.2, however, the difference frame r
contains mainly high frequency noise. Therefore, traditional
predictive coding and transform coding fail to compress the
difference frame. To reduce the variance of the r and leading to
small σ′2, the dictionary learning based sparse representation
method is an efficient approach, which is widely used in image
demonising. The sparse representation not only removes high
frequency noise in r, but also efficiently protects the remained
structure information as patterns in learned dictionary. Finally,
leading to small σ′2 value and better overall R-D performance.

Moreover, to reduce the extra bits consumption, specif-
ically designed CABAC encoder according to the statistic
characteristic of sparse represented components is designed.
The detailed algorithm design is introduced in the following
section.

III. THE PROPOSED FRAMEWORK AND ENTROPY
ENCODING STRATEGY

A. Dictionary Learning Based Two-stage Video Compression

Our proposed two-stage framework shown in Fig.1 consists
of two main stages. The first stage is responsible for initially
compressing the video to obtain a compressed lossy video
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Fig. 2. Illustration of a segment of frames and residuals: x (original), x̂
(reconstructed), their residual r, and x̂′ (final reconstructed), and the final
reconstruction error e.

bitstream. To ensure that the compressed video retains more
details, it is necessary to restore the information lost in the first
stage encoding. Therefore, in the second stage, we compress
the different between the original video and the reconstructed
video of first stage to restore high-quality near-lossless video.
As is discussed in the first section, we adopt dictionary learning
based sparse representation to compress the difference frame as
complementary information to enhance reconstruction quality.

In compressing the difference frame in the second stage,
we use an over-complete dictionary, pre-trained with a large
amount of data using the K-SVD algorithm, for sparse repre-
sentation. The difference frame is divided into patches, the nth

patch rn is decompose into a dictionary matrix Φ and a sparse
coefficient matrix sn. The dictionary Φ stores the features of
the original samples rn, and the sparse coefficient matrix sn
can represent rn using fewer non-zero coefficient through the
dictionary matrix Φ, as shown in the following equation.

rn = Φ · sn (9)

where each column of rn represents a p × p image patch,
and each column of Φ represents a dictionary atom. We
can represent an image block rn,i in rn using the sparse
coefficients sn,i corresponding to a column in sn and the
dictionary Φ, i.e., rn,i = Φ · sn,i.

To solve for Φ and sn in order to represent the residual
matrix R, an optimization problem needs to be addressed, as
shown in the following equation:

min
Φ,sn

||rn −Φ · sn||2F s.t. ∀i, ||sn,i||0 ≤ T0 (10)

where T0 represents the number of nonzero elements. The
notation || · ||F stands for the Frobenius norm and || · ||0
stands for the zero norm. Using K-SVD, we first compute
the sparse coefficient matrix sn through sparse representation.
Then, during the dictionary learning process, we sequentially
update each atom of the dictionary Φ. This involves K itera-
tions where each iteration requires performing singular value
decomposition(SVD) to update the dictionary.

Furthermore, in our proposed DL-based two-stage frame-
work, sparse representation is essential both during the learning
of the K-SVD dictionary and when using the learned over-
complete dictionary to represent image samples. This involves



computing a sparse solution si under the residual r and
dictionary Φ, as shown in the following equation:

min
sn,i

||sn,i||0 s.t. ||rn,i −Φ · sn,i||22 ≤ ϵ (11)

ϵ represents a small allowable error. We use orthogonal
matching pursuit (OMP) [11] to select the dictionary’s basis
vector that best matches the current difference patch rn,i at
each iteration. It updates the residual until the predetermined
sparsity condition is met. The resulting sparse matrix is then
entropy coded to obtain the a complementary bitstream.

Specifically, different patch sizes adopted in the dictionary
learning and sparse representation show varying compression
performance under different bit rates. We propose using two
different patch sizes to handle video residuals across different
bit rate ranges. When processing high bit rate videos using
small quantization parameters (QP), the difference frame r to
be compressed are relatively sparse. In this case, we use a
small patch size of 8×8 for sparse encoding. Conversely, when
handling low bit rate videos with large QP, where difference
frame r contains more structural information, as shown in
Figure 2, we use a larger patch size of 16× 16.

To be noticed, the proposed scheme is different from tra-
ditional two-stage encoding methods that adjust compression
ratio only by QP. In contrast, the method proposed in this
paper allows for dynamic adjustment of multiple parameters
including QP in the first stage compression, sparsity level
and patch size during sparse representation based compres-
sion in the second stage. This multi-parameter controlled
the compression scheme offers greater scalability compared
to traditional methods, leading to better R-D performance.
Through this framework, we can not only fully utilize the
original encoder’s algorithm for lossy compression but also
supplement the lost information to flexibly enhance the video
reconstruction quality and achieve a near-lossless performance.

B. Entropy Coding Designed for Sparse Represented Data

In this work, we modify the CABAC for compression and set
reasonable context index to achieve the maximum compression
efficiency. CABAC mainly consists of binarization, context
modeling, and binary arithmetic coding. Our modified CABAC
firstly iterates through each column of sparse coefficient matrix
sn. For each column, we record the number of non-zero
coefficients num, the values of the coefficients val, the sign of
the coefficients sign, and the run lengths between coefficients
run.

These three variables are then binarized in sequence. The
number of non-zero coefficients (num) and the sign of non-
zero coefficients (sign) are encoded using fixed-length coding,
which ensures a straightforward and efficient representation of
the count of significant values in each column. The coefficient
values (val) and the run lengths (run) are encoded using
exponential Golomb coding. Exponential Golomb coding is
chosen for its efficiency in encoding a wide range of values
with fewer bits, especially when dealing with sparse data. This
method helps to minimize the bit rate by taking advantage

of the distribution patterns in the sparse coefficient matrix,
leading to more effective compression.

After binarization, we perform arithmetic coding on the four
variables using different contexts. Unlike HEVC’s CABAC,
which establishes a table for coefficient probability changes
and converts them by lookup, we simplify this step. We
use traditional binary arithmetic coding, where the context
probability is dynamically updated based on the previous
symbol. However, for each variable to be encoded, we set
different context models and mechanisms for selecting these
models. This allows us to optimally encode according to the
corresponding probability distribution of each variable. For
example, for val, we use the preceding symbol to select
different context models to achieve the optimal compression
rate.

By utilizing context models specifically designed to each
variable, we can more accurately predict the probability distri-
bution of the symbols, thereby enhancing the efficiency of the
arithmetic coding process. For num, a context model based
on the distribution of previous counts can be employed. For
val, the context is chosen based on the preceding coefficient,
allowing the model to adapt to local variations in the data.

This context-adaptive approach enables the CABAC to better
exploit the statistical properties of the sparse coefficient matrix,
leading to a higher compression ratio and more efficient
encoding.

IV. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

A. Implementation

The method proposed in this paper consists of two stages.
The first stage involves a basic encoder using HM16.20 for
initial lossy compression of the video. In the second stage,
difference frames are extracted between the first frames of
the reconstructed and original videos. These frames undergo
dictionary learning for feature extraction, and following frames
are sparsely represented based on the shared dictionary. The
resulting sparse coefficient matrix is entropy encoded to
generate the bitstream for the second part. The experiments
use the official HEVC datasets, with Classes A through E
representing different resolutions. At the decoder, residuals
are reconstructed into near-lossless form using the sparse
coefficient matrix and the dictionary.

B. Experimental Results

To demonstrate the high coding efficiency of the proposed
dictionary learning based two-stage compression method in
near-lossless video coding in high bitrate range, we use small
QP values of 1, 3, 5 and 7 in the first stage encoding. For the
second stage coding, we employ a fixed dictionary learning
sparsity L of 6, a patch size p× p of 8× 8. Standard test se-
quence of different resolution and characteristics are employed
encoded under Low-Delay Main configuration. The standard
HEVC test model HM16.20 with same coding configuration
is used as the comparative method. The Bjontegaard Delta
Bitrate (BD-BR) [10] is used to measure the R-D performance
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Fig. 3. TOP: High-bitrate R-D curves. Bottom: Low-bitrate R-D curves. From left to right: PeopleOnStreet (Class A), BQTerrace (Class B), RaceHorses (Class
C), BQSquare (Class D).

TABLE I
BD-BR FOR HIGH-BITRATE CODING

Class Name QP Bitrate(kbps) PSNR(dB) Bitrate(kbps) PSNR(dB) BD-BR

ClassA

Traffic
1 577236.76 76.04 668166.68 93.89

-14.20%3 535838.38 66.12 541805.17 93.50
5 483697.06 59.42 503812.08 73.68
7 372053.75 54.21 404999.16 60.34

PeopleOnStreet
1 598408.27 72.54 600148.11 98.11

-15.70%3 550358.25 64.06 559510.79 85.57
5 479540.71 58.03 503510.03 69.54
7 385080.43 54.26 417423.74 60.00

ClassB

Cactus
1 649417.20 81.45 650635.68 95.68

-19.01%3 606358.76 69.81 609813.81 93.64
5 564251.79 60.07 580899.03 76.26
7 490673.41 55.20 517644.89 62.48

BQTerrace
1 687526.79 69.28 690565.55 84.66

-32.38%3 634135.23 64.10 642196.10 80.64
5 565464.34 58.27 588692.95 70.39
7 488142.68 54.94 519441.66 61.90

ClassC

BQMall
1 130057.35 78.13 130143.79 88.72

-16.30%3 120625.53 67.56 121541.88 87.06
5 112504.52 60.02 116095.21 75.99
7 94904.86 54.92 101148.16 61.32

Racehorse
1 68508.28 71.99 68670.81 86.11

-25.95%3 63731.26 65.16 64413.56 84.20
5 56823.99 58.33 59134.56 70.03
7 48533.16 54.67 51630.90 61.16

ClassD

BQSquare
1 30462.74 73.04 30521.32 83.51

-14.75%3 28421.90 66.07 28716.51 80.08
5 26381.74 59.80 27325.90 72.97
7 22218.88 54.75 23793.62 60.31

BlowingBublles
1 28431.05 76.06 28456.62 82.66

-9.70%3 26403.46 66.62 26625.27 80.42
5 24463.63 59.44 25293.60 73.30
7 21062.52 54.84 22371.51 60.56

ClassE

Fourpeople
1 233402.96 74.89 233873.51 89.89

-31.33%3 217671.19 66.33 220293.33 88.22
5 192975.68 59.47 201753.80 72.45
7 135327.89 53.94 150377.98 59.31

Johnny
1 228459.63 74.70 190761.44 88.35

-43.60%3 213700.47 66.49 180062.38 86.49
5 189210.13 59.55 164890.23 71.54
7 130501.36 53.97 121242.64 59.47

Average
1 323191.10 74.81 333009.58 89.16

-22.29%3 299724.44 66.23 303099.13 85.98
5 269531.36 59.24 280438.54 72.62
7 218849.89 54.57 235432.28 60.69

difference. Experimental results in Table 1 demonstrates that
for near-lossless coding scenario in high bitrate range, our
proposed scheme outperforms traditional HEVC encoder by
−22.29% BD-BR on average. It is interesting to notice that
in near-lossless video coding, the proposed method maintains
similar bitrate while achieves significant quality improvement,
for example, PSNR increase of 16.54 dB is achieved with only
1.27% bitrate increase for sequence BQTerrace encoded using
QP of 3. The small increase of bitrate is due to that with
small QP, the difference frame from the first stage is sparse.
With small extra bits as complementary information, the lost
details are well restored and the final reconstruction quality is
significantly improved.

The proposed scheme also shows better R-D performance
than traditional encoder in low bitrate coding scenario, and
maintains near-lossless performance. The evaluation is con-
ducted with a fixed dictionary learning sparsity L of 6, a patch
size a patch size p × p of 16 × 16. The Low-Delay P Main
configuration is used with QP values of 17, 22, 27, and 32

TABLE II
BD-BR FOR LOW-BITRATE CODING

Class Name QP Bitrate(kbps) PSNR(dB) Bitrate(kbps) PSNR(dB) BD-BR

ClassA

Traffic
17 70426.46 44.93 82743.45 46.76

-33.00%22 22852.28 41.73 35770.09 44.35
27 7813.48 38.95 21205.44 42.58
32 3166.67 36.39 16968.12 41.38

PeopleOnStreet
17 116064.08 45.74 128182.72 47.93

-56.40%22 53705.14 42.14 66462.02 45.95
27 23783.96 38.9 37111.35 44.37
32 12409.74 36.07 26159.39 43.20

ClassB

Cactus
17 171672.82 44.45 182143.01 45.95

-59.10%22 45857.47 39.81 56948.36 42.67
27 10022.62 37.36 21482.60 40.99
32 4322.14 35.33 16065.08 40.01

BQTerrace
17 204200.25 45.62 216479.38 46.89

-61.81%22 101856.72 41.25 114826.91 43.93
27 26916.82 37.26 40449.17 41.72
32 6668.23 34.46 20574.82 40.43

ClassC

BQMall
17 22682.86 44.32 25083.17 46.45

-36.43%22 7590.78 40.85 10093.14 44.04
27 3547.32 37.94 6147.50 42.26
32 1712.65 35.01 4405.24 40.75

Racehorse
17 19270.23 45.34 20453.38 47.08

-46.10%22 9677.00 41.32 10926.00 43.83
27 4330.79 37.62 5637.29 41.27
32 1763.41 34.11 3113.69 39.28

ClassD

BQSquare
17 7581.41 44.44 8181.15 46.59

-68.10%22 4089.19 40.28 4716.88 43.57
27 1997.11 36.34 2650.36 41.29
32 796.38 32.52 1471.22 39.48

BlowingBublles
17 7091.50 44.17 7465.26 45.92

-42.35%22 3136.84 39.75 3613.39 42.56
27 1424.34 36.14 1981.21 39.89
32 646.98 33.03 1223.16 37.99

ClassE

Fourpeople
17 17977.44 45.83 23432.35 49.25

-79.17%22 3654.89 43.25 9297.70 48.06
27 1228.06 40.93 7036.98 47.19
32 602.90 38.40 6574.01 46.46

Johnny
17 18119.69 46.22 23540.17 49.78

-32.70%22 4352.52 43.81 9932.94 48.67
27 1015.57 41.70 6704.56 47.84
32 389.91 39.64 6169.47 47.20

Average
17 65508.67 45.11 71770.40 47.26

-51.52%22 25677.28 41.42 32258.74 44.76
27 8208.01 38.31 15040.65 42.94
32 3247.90 35.50 10272.42 41.62

that follows the common test conditions. The standard HEVC
test model HM16.20 with same coding configuration is used
as the comparative method. The BD-BR is used to measure
the R-D performance difference. As shown in Table 2, the pro-
posed dictionary learning based two-stage compression method
significantly outperforms standard HEVC lossy encoding in
the low bit rate range that an average BD-BR of −51.52% is
achieved. In video coding at low bitrate range, the difference
frame generated from the first stage contains abundant noise
and also structural information, which is sparse represented and
lossy compressed in the second stage controlled by the sparsity
level. Since the lost information complementary and quality
restore in the second stage, the PSNR is always higher than
that of standard encoder. It hence more reasonable to compare
the bitrate reduction between the proposed scheme with higher
QP and standard encoder with lower QP. For example, when
encoding sequence Cactus, the proposed scheme using QP of
27 achieves PSNR of 40.99 dB, which is of 1.18dB higher
than the standard encoder using QP of 22. However, the bitrate



TABLE III
R-D PERFORMANCE COMPARISON BETWEEN THE PROPOSED

METHOD AND ELC [7]
BD-BR (%)

ELC [7] Our method

ClassA -10.4% -17.0%
ClassB - 7.8% -28.1%
ClassC -15.8% -24.1%
ClassD -21.2% -14.2%
ClassE - 7.4% -32.5%

Average -12.5% -23.2%

reduction is 59.10%. This demonstrates the proposed schemes
always works in common bitrate range. Moreover, we can
find from Table 2 that the average PSNR values using QP
from 22, 27, 32 and 37 are all larger than 41 dB. Commonly,
a PSNR measure of 40 dB, or above, typically constitutes
visually lossless coding, considered as near-lossless [12]. We
also depict the R-D curves in Fig. 3 to clearly shows the R-
D performance at different bitrates range. It can be observed
that our proposed method achieves significant improvements
in both high and low bitrate video coding scenarios.

Moreover, comparison is made between our proposed
method and a multi-layer coding framework with enhancement
layer (ELC) proposed in [7]. The experimental results in Table
3 demonstrate that with the same coding parameters, our
proposed scheme outperforms the ELC approach by −10.6%
BD-BR on average. To be noticed, our proposed method shows
better R-D performance in high resolution test sequences
including Class A, B, C and E, indicating that the dictionary
learning based compression is more efficient for high resolu-
tion videos. While for Class D of low resolution sequences,
the comprasion method ELC shows better R-D performance.

V. CONCLUSIONS

In this work, we propose a dictionary learning based two-
stage video encoding framework to compress and leverage
the reconstruction errors as complementary information to
enhance final reconstruction quality. CABAC is modified to be
adaptive to the sparse represented reconstructed error, leading
to high coding efficiency. Experimental results demonstrate
that the proposed method achieves over 20% BD-BR reduction
dealing with near-lossless video coding at high bitrate range.
Additionally, the proposed framework is efficient under normal
bitrate range, leading to over 50% BD-BR reduction and
retaining near-lossless coding with PSNR values above 41 dB.

The proposed method can be implemented in video coding
systems beyond HEVC. During training stage of dictionary
learning, apart from adjusting the QP in the first lossy compres-
sion stage with standard encoder, we can also fine-tune training
parameters such as sparsity L and patch size p during the sec-
ond encoding stage with sparse coding tools to find the optimal
coding parameter set. Moreover, rate control employing bit
allocation algorithm between two encoding stages can further
improve the overall R-D performance. In our future work, well
designed inter-stage rate control method and optimal coding
parameters determination will yield even greater benefits.
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