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Abstract—Music similarity representation learning (MSRL)
based on individual instrument sounds (InMSRL) is a potential
technique to develop a new function in music recommendation
and retrieval systems, allowing users to focus on multiple partial
elements of music pieces. There have been proposed two main
approaches, Cascade that sequentially performs music source
separation (MSS) and music similarity feature extraction for each
instrument sound and Direct that directly extracts disentangled
music similarity features. Each approach has a specific problem;
in Cascade, a separation error often causes adverse effects on
the feature extraction; and in Direct, it is usually hard to learn
accurately disentangled features. In this paper, we propose multi-
task learning approaches that leverage MSS to address these
issues. For Cascade, we propose end-to-end fine-tuning of the
MSS model and the music similarity feature extractors using
an auxiliary separation loss. For Direct, we propose multi-task
learning based on the disentangled music similarity feature ex-
traction and MSS based on reconstruction with the disentangled
music similarity features. We conduct experimental evaluations
and demonstrate that 1) the end-to-end fine-tuning for Cascade
significantly improves InMSRL performance, 2) the multi-task
learning for Direct is also helpful to improve disentanglement
performance in the feature extraction, and 3) Cascade with the
end-to-end fine-tuning outperforms Direct with the multi-task
learning.

I. INTRODUCTION

Music recommendation and retrieval systems are useful
technologies under the current situation that the number of
music pieces has already exceeded 1 billion1 and further mar-
ket expansion is expected2. Methods utilizing users’ listening
histories [1], [2] have been widely used in these systems
although these methods cause several limitations, e.g., hard
to handle music pieces with less listening records. To address
this issue, content-based methods to extract content features
from a music piece to capture its characteristics have been
studied. Recently methods based on deep learning have at-
tracted attention since they can extract more precise content
features [3]–[6] than classical methods [7], [8]. In particular,
music similarity representation learning (MSRL) capable of
extracting music similarity features in an unsupervised manner
without using any hand-crafted labels is a promising way to

1https://go.pardot.com/l/52662/2023-10-23/ljk7xt/52662/
169805013966KGzgtB/Spotify 2023 Culture Next Report JP v3.pdf

2https://www.ifpi.org/wp-content/uploads/2020/03/Global Music Report
2023 State of the Industry.pdf

develop the music recommendation and retrieval systems to
widely handle existing music pieces.

MSRL based on individual instrument sounds (InM-
SRL) [9], [10] is a potential technique to develop a new
function allowing users to focus on multiple partial elements
of music pieces, e.g., searching for music pieces with similar
drum sounds. Hashizume et al. [9] proposed InMSRL model,
which inputs clean individual instrument sounds into the music
similarity feature extractors (Clean), and demonstrated its
high performance in the music similarity feature extraction.
However, in general, these clean individual instrument sounds
are not publicly available, making it practically impossible to
utilize them in general-purpose music recommendation and
retrieval systems. Therefore, research on the InMSRL model,
which inputs the music pieces themselves, has progressed and
two main approaches have been proposed. The first approach
sequentially performs music source separation (MSS) and
music similarity feature extractions (Cascade) [9]. However,
since an MSS model and music similarity feature extractors are
independently trained, separation errors are likely to cause ad-
verse effects on the music similarity feature extraction. On the
other hand, the second approach directly extracts disentangled
music similarity features (Direct) [10]. This method learns a
disentangled feature space consisting of different subspaces for
individual instrument sounds. However, such a learning is not
straightforward, and InMSRL performance tends to degrade
for some instruments.

In this paper, we propose multi-task learning approaches
that leverage MSS to address issues of Cascade and Direct
and aim to construct a universally applicable InMSRL model.
For Cascade, we propose Cascade-FT that performs end-to-
end fine-tuning (FT) of the pre-trained MSS model and the
music similarity feature extractors using an auxiliary sepa-
ration loss. For Direct, we propose Direct-Reconst that uses
multi-task learning based on the disentangled music similarity
feature extraction and MSS based on reconstruction (Reconst)
with the disentangled music similarity features. We conduct
experimental evaluations and demonstrate that 1) Cascade-FT
can improve InMSRL performance compared to Cascade, 2)
Direct-Reconst can improve disentanglement performance in
the music similarity feature extraction, and 3) Cascade-FT
have better performance than Direct-Reconst.



II. CONVENTIONAL INMSRL METHODS

A. Clean and Cascade

Hashizume et al. [9] proposed two InMSRL methods:
one inputting clean individual instrument sounds into music
similarity feature extractors (Clean) and the other inputting
individual instrument sounds separated by the pre-trained MSS
model of Spleeter [11] into them (Cascade).

The music similarity feature extractor of Clean and Cascade
is both trained using a triplet loss. In the i-th triplet, the three
types of sample segments, which is anchor x(a)

i that serves as
the basis, positive x

(p)
i defined as similar to the anchor and

negative x
(n)
i defined as dissimilar to the anchor, are used. By

denoting a distance function as d(·), a loss function can be
formulated as follows:

Ltriplet = max{0, d(x(a)
i ,x

(p)
i )− d(x

(a)
i ,x

(n)
i ) + δ} (1)

where δ is a margin that defines the minimum distance between
the anchor-positive and anchor-negative pairs. To perform
label-free learning, assuming that sample segments extracted
from the same music piece are similar to each other, a triplet
is constructed as follows:

• Anchor: Extracted from a randomly selected music piece
• Positive: Extracted from the same music piece as that of

the anchor
• Negative: Extracted from a different music piece from

that of the anchor.
In Cascade, it is inevitable to cause separation errors in

MSS. The previous studies [9] have confirmed that the per-
formance of Cascade significantly degrades compared with
Clean. Therefore, it is crucial to optimize the MSS model for
the instrument-dependent music similarity feature extractors.

B. Direct

Hashizume et al. [10] also proposed the other InMSRL
method to extract a disentangled music similarity feature with
a single feature extractor, where the disentangled music simi-
larity feature consists of subspaces for individual instrument-
dependent music similarity features, e.g., the first to 128-th
dimensional components of the 640-dimensional feature vector
are used to represent the music similarity focusing on drums.

The training process first involves pre-training. In this train-
ing, the single disentangled music similarity feature extractor
is trained using the disentangled features as reference targets,
which is formed by concatenating instrument-dependent music
similarity features extracted by Clean.

Next, similar to Cascade, the disentangled music similar-
ity feature extractor is further updated by using the triplet
loss as shown in (1). However, unlike Cascade, it is not
straightforward to train such a feature extractor. To develop
the disentangled music similarity feature extractor working
reasonably, the following two approaches are used.

• Conditioning the output of the disentangled music simi-
larity feature extractor

• Using pseudo-music-pieces as inputs.
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Fig. 1. Overview of pseudo-music-pieces. Instruments of the same color
and the same ID indicate sample segments extracted from the same music-
piece. This figure illustrates an example of the pseudo-music-pieces created
for learning focusing on drums.

Conditioning process conduct a masking operation inspired
by other disentangled representation learning [12], [13]. For
example, when focusing on the bass feature, we leave only
the dimensional components corresponding to a subspace for
the bass feature and masks the other dimensional components
to 0. By partially masking the feature vector, each subspace
can model the music similarity feature depending on a specific
instrument sound.

The Use of pseudo-music-pieces aims to improve the dis-
entangled performance of Direct. Fig. 1 shows an overview
of the pseudo-music-pieces. In Fig. 1, a music piece α and a
music piece β are similar to each other in drums but dissimilar
in the other instruments sounds. In contrast, the music piece α
and a music piece γ are dissimilar in drums but similar in the
other instruments. In the triplet loss-based learning, by using
the music piece α as the anchor, the music piece β as the
positive, and the music piece γ as the negative, the model can
focus only on the drum features.

However, it is still challenging to accurately disentangle a
music piece into the instrument-dependent subspace features.
Consequently, the performance of InMSRL based on Direct
tends to be insufficient.

III. PROPOSED INMSRL METHODS LEVERAGING
MULTI-TASK LEARNING

A. Cascade-FT

To address the issue of Cascade, we propose Cascade-FT to
optimize the MSS model by performing end-to-end fine-tuning
(FT).

1) Network Architecture: The network architecture of
Cascade-FT consists of the MSS model and the instrument-
dependent music similarity feature extractor connected in
series as shown in Fig. 2. The MSS model is based on the
U-Net [14], [15] structure, similar to the Spleeter [11] used
in Cascade. The network outputs a separation mask and the
separated instrument sound is generated by Hadamard product
of the input music spectrogram and the separation mask. In
this paper, we develop the instrument-dependent MSS models
to separately estimate the separation masks for individual
instrument sounds. The instrument-dependent music similarity
feature extractor is based on the U-Net encoder structure
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Fig. 3. Overview of Direct-Reconst model.

additionally using time-averaging and flattening operations and
a fully-connected layer to output a 128-dimensional feature
vector for each instrument sound.

2) Training: The training procedure consists of three stages:
training of the MSS models, training of the instrument-
dependent music similarity feature extractors and end-to-end
fine-tuning. First, the MSS models are trained in the same
manner as proposed by Jansson et al. [15]. The separation
loss for each instrument sound (denoted as LMSS in Fig. 2)
is calculated as the L1 loss between the output separated
instrument sound and a clean target instrument sound. Next,
the music similarity feature extractors are trained using the
triplet loss given by (1) (denoted as Ltriplet in Fig. 2) in the
same manner as in Cascade. During the training, the MSS
models are frozen and their parameters are not updated. The
L2 norm is employed as the distance function d(·) in the triplet
loss. Finally, in the end-to-end fine-tuning stage, all parameters
of the cascaded network consisting of the MSS models and
the instrument-dependent music similarity feature extractors
are updated by using a combined loss function given by
the triplet loss for the instrument-dependent music similarity
feature extractors and the separation loss for the MSS models
as an auxiliary loss. Note that three inputs (anchor, positive,
and negative) are required to compute the triplet loss, the
auxiliary separation loss for the MSS models during fine-
tuning is calculated for all three inputs. In the training, the
pseudo-music-pieces segments (shown in Fig. 1) are also used
as in Direct. Besides, we implement the data augmentation as
described in Section III-B3.

B. Direct-Reconst

To address the issue of Direct, we propose Direct-Reconst
incorporating MSS based on the reconstruction (Reconst) with
the disentangled music similarity features for the training of
the disentangled feature extractors.

1) Network Architecture: Fig. 3 shows the network architec-
ture of Direct-Reconst. The Direct-Reconst network consists of
three parts: the disentangled music similarity feature extractor,

a reconstruction network to reconstruct each instrument sound
from output sequences of the disentangled music similarity
feature extractor, and a time-averaging and flattening opera-
tions and fully-connected layer to generate the disentangled
music similarity feature vector from the output sequences. The
disentangled music similarity feature extractor has a similar
structure to the encoder of U-Net [15], and the reconstruction
network has a similar structure to the decoder of U-Net [15].
The each layer of the disentangled music similarity feature
extractor and those of the reconstruction network are connected
by skip connections. The instrument-dependent reconstruction
networks are developed for individual instrument sounds. As
in the MSS models, the reconstructed instrument sound is
generated by Hadamard product of the input music source
spectrogram and the output separation mask.

2) Training: The training procedure consists of two stages:
pre-training of the music similarity feature extractor and multi-
task learning of the music similarity feature extractor and
the instrument-dependent reconstruction network. In the pre-
training of the music similarity feature extractor, we follow the
same training procedure as in Direct [10]. We use 31 out of
the 25 possible combinations of 5 musical instrument sources
(drums, bass, piano, guitar, and residuals) as input, excluding
the silent pattern. The training loss for the multi-task learning
is a combination of the triplet loss given by (1) (denoted as
Ltriplet in Fig. 3) for the disentangled music similarity features
and the reconstruction loss (denoted as LMSS in Fig. 3) for the
output reconstructed instrument sounds. The distance function
d(·) in the triplet loss for the disentangled music similarity
features is defined as the L2 norm. The reconstruction loss is
defined as the L1 loss between the output instrument sound
from the reconstruction network and the clean instrument
sound in the same manner proposed by Jansson et al. [15]. As
in Direct, we use the conditioning operation and the pseudo-
music-pieces.

3) Disentanglement Enhancement: To enhance the disen-
tangled music similarity feature extractor, we modify the con-
ditioning process and utilize pseudo-music-pieces. The modi-
fied conditioning process applies the masking operation to not
only the output of the time-averaging and flattening operations
and fully-connected layer (Conditioning1D in Fig. 3) but also
the input of the reconstruction network (Conditioning3D in
Fig. 3). Conditioning1D is the same as the conditioning process
used in Direct. Conditioning3D is its extension to apply the
masking operation to a feature sequence. By Conditioning3D,
the reconstruction network can focus only on the features
corresponding to each target instrument sound. For the pseudo-
music-pieces, we further introduce data augmentation (DA).
While Direct generates a fixed set of triplet data of the pseudo-
music-pieces beforehand and use it in the training, Direct-
Reconst introduces a process of randomly generating triplet
data of the pseudo-music-pieces each time to construct a mini-
batch during training.
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IV. EXPERIMENTAL EVALUATIONS

A. Dataset

The dataset used for evaluation was the Slakh [16], which
was also used in the previous study [9], [10]. The dataset con-
sisted of MIDI-generated music pieces and MIDI instrument
tracks in the music pieces. Each music piece contained drums,
bass, piano, and guitar sounds. Following previous studies [9],
[10], the other sounds in the music pieces were treated as
residuals.

The dataset consisted of 2100 music pieces containing
multiple groups of music pieces generated from the same MIDI
file. In this experiment, we excluded music pieces generated
from the same MIDI file, resulting in 1200 music pieces used
for training, 270 music pieces used for validation, and 136
music pieces used for evaluation.

B. Evaluation Metrics

The proposed methods were based on the same learning
paradigm as the previous studies [9][10], assuming that seg-
ments extracted from the same music piece were similar to
each other. Therefore, as an evaluation metric, we used music
ID estimation accuracy as used in the previous studies. In this
experiment, we used the following two metrics, a music ID
estimation score on normal-test-music-pieces (MES-Normal)
and a music ID estimation score on pseudo-test-music-pieces
(MES-Pseudo).

1) Music Estimation Score on Normal-Test-Music-Pieces
(MES-Normal): To evaluate the performance of the feature
representation, we used the accuracy of the music ID estima-
tion with a simple method using the feature representation.
Specifically, assuming that all test segments were embedded
into the learned feature space beforehand and the music IDs
of all segments were known except for a test segment to be
estimated, we used the 5-nearest neighbors (5NN) method to
estimate the music ID of the test segment. In the evaluation
for each instrument sound, we only used feature dimensions
corresponding to the target instrument in 5NN distance calcu-
lation while masking the other feature dimensions. The entire
test dataset (136 music pieces) was used to calculate the music
ID estimation accuracy.

2) Music Estimation Score on Pseudo-Test-Music-Pieces
(MES-Pseudo): The proposed method aimed to learn the
music similarity feature representations focusing on individual
instrument sounds. However, in MES-Normal, the ground truth
label for the 5NN method was the same over all instrument
sounds as shown in the top part of Fig. 4. Therefore, it was
essentially hard to evaluate the disentanglement performance
of the learned representations by MES-Normal. To investigate
the disentanglement performance, we used pseudo-test-music-
pieces in MES-Pseudo. In MES-Pseudo, the ground truth label
was different between the target instrument and the others;
e.g., the label of the target instrument sound (i.e., drums label)
was different from the others as shown in the bottom part of
Fig. 4. Furthermore, we excluded all segments extracted from
the same pseudo-music-piece as that of each test segment to
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Fig. 4. Difference between MES-Normal and MES-Pseudo. The top part of
the figure shows MES-Normal, and the bottom part shows MES-Pseudo. This
is the example of evaluation for the drums. Instruments of the same color and
the same ID indicate segments extracted from the same music piece.

prevent the music ID estimation focusing on the no-targeted
instruments. The pseudo-test-music-pieces used for the test
consisted of 50 music pieces in total, with 10 music pieces
for each target instrument sound label and 5 music pieces for
each non-target instrument sound label.

C. Experimental conditions

Music segments used in the experiments were cut into
3-second segments for training and 10-second segments for
validating and testing. The music segments where the target
instrument was silent were excluded. The sampling rate was
set to 44100 Hz, and a window size of 2048 and an offset of
512 were used for the short-time Fourier transform (STFT).
The number of mel frequencies for the log Mel-spectrogram
used as input to the Cascade-FT music similarity feature
extractors was set to 259. The learning rate for the training
of the MSS models and the music similarity feature extractors
in Cascade-FT was set to 0.00005, and the learning rate for
the fine-tuning was set to 0.00001. The learning rate for the
pre-training of Direct-Reconst and the multi-task training of
the disentangled music similarity feature extractor and the
reconstruction network was set to 0.0001. Adam [17] was used
to train both models. The maximum number of epochs was set
to 400, and training was terminated if the minimum value of
the loss function on the validation data was not updated over
100 epochs.

D. Experimental Results

Evaluation results of MES-Normal and MES-Pseudo are
shown in Table I and Table II, respectively. We also show
an evaluation result of MSS accuracy for the output separated
sounds in Cascade methods in Table III.

1) Evaluation of Cascade-FT: It can be observed from
Table I that Cascade-FT achieves higher evaluation scores than
the previous method [9] for all instruments. This suggests that
the proposed methods achieve higher InMSRL performance
compared to the previous method. From a comparison between
Cascade w/ from-scratch w/o pseudo-music-pieces and Cas-
cade w/ Spleeter [9], the performance improvements can be
seen in former. This is caused by the insufficient separation
accuracy of the MSS model of Cascade [9], as shown in Table
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TABLE I
EVALUATION RESULTS OF MES-NORMAL (%). THE EVALUATION SCORES OF Clean [9], Cascade W/ SPLEETER [9] AND Direct [10] ARE RESPECTIVELY

QUOTED FROM [9] AND [10]. IN W/O PSEUDO-MUSIC-PIECES, THE MUSIC SIMILARITY FEATURE EXTRACTORS ARE SIMPLY TRAINED WITH NORMAL MUSIC
PIECES. EXCLUDING ABLATION, THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method drums bass piano guitar residuals
Clean [9] 98.04 94.60 98.14 96.35 -
Cascade w/ Spleeter [9] 88.91 63.87 50.34 - -
Cascade w/ from-scratch 90.98 73.39 80.77 79.53 -

w/o pseudo-music-pieces (ablation study) 92.71 90.20 93.62 90.90 -
Cascade w/ from-scratch, FT (Cascade-FT) 93.03 74.96 81.96 82.78 -

w/o pseudo-music-pieces (ablation study) 94.89 95.63 96.21 94.40 -
Direct [10] 89.69 84.45 85.70 86.27 84.86
Direct w/ DA 89.33 71.09 79.74 81.75 85.67
Direct w/ DA, Reconst (Direct-Reconst) 91.14 81.30 84.76 85.17 88.84

TABLE II
EVALUATION RESULTS OF MES-PSEUDO (%). THE EVALUATION SCORES OF Direct [10] ARE QUOTED FROM THE PREVIOUS STUDY [9]. IN W/O

PSEUDO-MUSIC-PIECES, THE MUSIC SIMILARITY FEATURE EXTRACTORS ARE SIMPLY TRAINED WITH NORMAL MUSIC PIECES.

Method drums bass piano guitar residuals
Cascade w/ from-scratch 98.68 93.02 91.73 92.19 -

w/o pseudo-music-pieces (ablation study) 95.09 77.30 81.02 77.60 -
Cascade w/ from-scratch, FT (Cascade-FT) 98.91 94.80 93.55 93.89 -

w/o pseudo-music-pieces (ablation study) 95.96 71.54 69.59 77.40 -
Direct [10] 85.5 37.1 31.3 44.7 74.7
Direct w/ DA 97.93 68.22 69.22 63.24 89.99
Direct w/ DA, Reconst (Direct-Reconst) 98.25 77.74 79.20 82.47 94.62

TABLE III
EVALUATION RESULTS OF THE MSS ACCURACY FOR THE OUTPUT

SEPARATED SOUND IN Cascade. SDR (SIGNAL-TO-DISTORTION RATIO)
WAS USED FOR THE EVALUATION. THE RESULTS OF Cascade W/
SPLEETER [9] ARE QUOTED FROM THE PREVIOUS STUDY [9].

MUSEVAL [18] WAS USED FOR CALCULATION OF SDR.

SDR
Method drums bass piano guitar
Cascade w/ Spleeter [9] -13.7 -15.5 -14.7 -
Cascade w/ from-scratch 15.50 10.54 7.81 6.94

III. This poor performance of Spleeter is likely due to the
fact that Spleeter is trained on music with raw-audio-songs,
while the experiments in this paper and [9] use music pieces
generated from MIDI. Moreover, we can also observe that the
fine-tuning in the proposed method is effective for further per-
formance improvements from a comparison between Cascade
w/ from-scratch and Cascade-FT. This results demonstrates
that the performance of the MSS model in Cascade methods
strongly affects the accuracy of InMSRL.

The disentanglement performance of each InMSRL method
can be compared in Table II. All evaluation scores of Cascade-
FT exceed 90%. We also observe that the fine-tuning is helpful
to further improve the performance.

These results suggest that the proposed method Cascade-FT
can learn high-quality music similarity feature representations
focusing on individual instrument sounds.

2) Evaluation of Direct-Reconst: Table I shows that Direct-
Reconst does not outperform the previous method [10] for
some instruments, i.e., bass, piano, and guitar. On the
other hand, Direct-Reconst significantly outperforms previous
method in the evaluation result of MES-Pseudo as shown in Ta-
ble II. These results indicate that Direct [10] for MES-Normal

is significantly affected by the leakage of the other instrument
sounds and its disentanglement performance is actually low.
On the other hand, the proposed method Direct-Reconst not
only improves the evaluation scores of MES-Pseudo but also
maintains the evaluation scores of MES-Normal at the same
level as the previous method. Therefore, the proposed method
can achieve better InMSRL performance than the previous
method. Table II also shows that DA significantly improves
the MES-Pseudo score, demonstrating the effectiveness of
DA. Additionally, a comparison of Direct w/ DA and Direct-
Reconst in Tables I and II shows that the multi-task learning
of the disentangled music similarity feature extraction and
the reconstruction is effective for improving the InMSRL
performance.

3) Clean, Cascade and Direct Approaches Comparison:
Tables I and II show that the Direct approach tends to have
higher MES-Normal scores than MES-Pseudo scores for some
instruments except for drums and residuals. Normally, MES-
Normal score would be lower than or equal to the MES-Pseudo
score because the MES-Normal uses 136 target labels com-
pared to 10 for the MES-Pseudo at 5NN. This is considered
to be due to the leakage of the other instrument sounds as
discussed in Section IV-D2. In contrast, the Cascade approach
can more precisely focus only on target instrument sound, as
demonstrated by the higher MES-Pseudo scores than the MES-
Normal scores. Therefore, it is demonstrated that the Cascade
approach achieves higher InMSRL performance than the Direct
approach. On the other hand, the Direct approach needs to use
only the disentangled music similarity feature extractor in the
inference step, and therefore, its computational cost is lower
than the Cascade approach.

MES-Normal scores of Clean are the most highest in all
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of InMSRL models and it is predicted that MES-Pseudo
scores would be much higher scores than MES-Normal scores
because of its less target labels. This result is to be expected
because Clean utilizes clean individual instrument sounds as
input, which are generally not publicly available, therefore
explicitly providing distinct individual instrument features to
the music similarity feature extractors. By utilizing multi-task
learning, we were able to improve the performance of Cascade
and Direct models, which input the music pieces themselves.
However, there is still room for further improvement in Cas-
cade and Direct approach considering Clean model.

4) The effectiveness of pseudo-music-pieces: In Cascade
approach, the evaluation result of w/o pseudo-music-pieces
showed in Table I and Table II indicates that by using pseudo-
music-pieces, we can minimize the adverse effects of separa-
tion errors caused by the MSS model. Note that although the
performance w/o pseudo-music-pieces looks higher than that
w/ it in Table I, this result is caused by the leakage of the
other instrument sounds, and therefore, the actual InMSRL
performance is limited. The use of pseudo-music-pieces is
also essential in Direct approach as reported in [10]. These
results demonstrate that the use of pseudo-music-pieces is an
important technique to improve InMSRL performance.

V. CONCLUSION

In this paper, we have proposed two methods to improve
InMSRL performance by modifying two existing approaches,
Cascade and Direct. For Cascade, we have proposed end-to-
end fine-tuning of the MSS model and the music similarity
feature extractors using an auxiliary separation loss, and for
Direct, we have proposed joint training of the disentangled fea-
ture extraction and MSS based on the reconstruction with the
disentangled music similarity features. We have conducted ex-
perimental evaluations and have demonstrated that the end-to-
end fine-tuning for Cascade improves InMSRL performance,
the multi-task learning for Direct is also helpful to improve
disentanglement performance in the feature extraction and
Cascade with the end-to-end fine-tuning outperforms Direct
with the multi-task learning. Future work includes using raw-
audio-songs and vocal sound.
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