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Abstract—Single Plane-Wave Imaging (SPWI), which transmits
a single plane wave, can acquire ultrasound images at more than
1,000 fps, although it has poor lateral resolution and contrast.
Some methods have been proposed to improve the quality
of ultrasound images acquired by SPWI using deep learning,
however, the quality is lower than that of compounded images,
which are composed of multiple SPWI images. In addition, the
RF signal is used as an input, which is computationally expensive.
In this paper, we propose a method to improve the performance
of SPWI using U-Net and the Discrete Wavelet Transform (DWT).
The proposed method uses In-phase and Quadrature (IQ) data
as the input and output of U-Net and loss functions that take
into account the characteristics of the RF signal to improve the
quality of images, and also uses IQ data after DWT to reduce
the computational complexity and the inference time. Through
a set of experiments using our ultrasound image dataset, we
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Ultrasound imaging can acquire images in real time with a
small and portable device and with low impact on the human
body compared to Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI). Therefore, ultrasound imaging is
utilized for analyzing and evaluating the cardiovascular system
and observing muscular tissue [1]. In standard ultrasound
imaging, ultrasound images are obtained by sequentially trans-
mitting more than 100 focused ultrasound beams, resulting in
speeds limited to a few tens of fps [2], [3]. Since detailed tissue
observation [4]–[7] and blood flow evaluation [8]–[11] require
ultrasound images at high frame rates, Plane-Wave Imaging
(PWI), which uses plane waves to acquire ultrasound images,
has been used [12].

PWI can acquire images at a higher frame rate than standard
ultrasound imaging by transmitting plane waves of the same
width as the field of view several times. Single Plane-Wave
Imaging (SPWI), which acquires images by transmitting a
single plane wave, can archive speeds of more than 1,000
fps, while there is a problem that the lateral resolution and
contrast of the images are degraded [13]. Coherent Plane-
Wave-Compounding (CPWC) is applied to SPWI to address
the above problems [14]. CPWC acquires a compound image

by transmitting a plane wave multiple times in different direc-
tions while controlling the delay of the ultrasound elements,
and then coherently adding the received Radio Frequency (RF)
signals. CPWC can improve the lateral resolution and contrast
of images, although the frame rate is lower than that of SPWI
due to the need to transmit a plane wave multiple times. To
address the trade-off between frame rate and image quality in
CPWI, several methods have been proposed to improve the
quality of ultrasound images obtained by SPWI comparable
to that of compound images by deep learning [15], [16]. Li
et al. [15] proposed a method using U-Net [17], which is
commonly used in image segmentation and image generation.
U-Net in this method consists of VGG-13 [18] as an encoder
and a network of four inverse convolution layers as a decoder.
This U-Net is trained to minimize the L1 loss between the
compound images obtained by CPWC and the ultrasound im-
ages generated by U-Net. Since the L1 loss between images is
used, the high-frequency components of the compound image
cannot be represented sufficiently, resulting in the generation
of blurred ultrasound images. Perdios et al. [16] also proposed
a U-Net based method. Mean Signed Logarithmic Absolute
Error (MSLAE) is used as a loss function to take into account
the wide dynamic range of ultrasound images and to preserve
the characteristics of the RF signal. On the other hand, it is
necessary to set an appropriate threshold to train U-Net with
MSLAE, however, the details of the threshold determination
are not available, making the method unreproducible. Both
methods use RF signals as input, which have higher resolution
than images, and are computationally expensive, therefore, the
real-time capability of ultrasound imaging may be compro-
mised.

To address the above problems, we propose a method to
improve the quality of ultrasound images acquired by SPWI
using U-Net and to reduce the computational cost by using
Discrete Wavelet Transform (DWT). The proposed method
uses In-phase and Quadrature (IQ) data, which consists of the
real part of the beamformed RF signal and the imaginary part
of the Hilbert transform of the RF signal, as the input and
output of U-Net to represent the high frequency component



of the ultrasound signals. Since the effect of the point spread
of the envelope signal, which is the amplitude of the IQ data,
increases with the transmission distance of the ultrasound [19],
we introduce loss functions that take into account the effect
of the point spread, which is close to the envelope signal,
and the frequency characteristics of the RF signals. We also
reduce the computational complexity and inference time by
inputting the IQ data after DWT into U-Net. Since 2D data
can be decomposed into four sub-bands (LL, LH , HL, HH)
by DWT, DWT has been applied to image coding and texture
identification based on multiple resolution analysis [20]. In the
field of ultrasound imaging, DWT has been also used to reduce
speckle noise in ultrasound images [21] and to automatic
diagnosis of Graves’ disease [22]. Since DWT can reduce the
data size by half while keeping the information in the 2-D data,
the proposed method can reduce the computational complexity
and inference time by inputting the IQ data after DWT. The
effectiveness of the proposed method is demonstrated through
a set of experiments using the ultrasound image dataset created
by the authors.

II. METHOD

In this section, we describe the details of the network
architecture and loss functions for the proposed method to
improve the quality of ultrasound images acquired by SWPI.

A. Network Architecture

The proposed method employs an encoder-decoder model
based on U-Net [17] as shown in Fig. 1. The proposed method
replaces the encoder of U-Net with ResNet-34 [23] and uses a
decoder consisting of inverse convolution layers as in U-Net.
To clarify the difference between the original U-Net and U-
Net used in the proposed method, U-Net used in the proposed
method is denoted as ResU-Net in the following. We use IQ
data as the input and output of ResU-Net instead of ultrasound
images to take into account the high-frequency components of
ultrasound images. The use of IQ data makes it possible to take
into account point the effect of point spread of the envelope
signal acquired by CPWC and frequency characteristics of the
RF signal. For IQ data with H ×W , 2D DWT is applied to
each of the real and imaginary parts, which is decomposed
into four sub-bands, i.e.,LL, LH , HL, and HH , and the size
of IQ data becomes H

2 × W
2 for each sub-band. The four sub-

bands are concatenated in the channel direction and the data
with 8 × H

2 × W
2 is used as the input to ResU-Net. The IQ

data is output by applying 2D IDWT to the data with 8× H
2

W
2

obtained at the final layer of ResU-Net and reconstructing it
to the original size of 2×H× W.

B. Loss Functions

The training of the proposed method employs the three
loss functions based on the IQ data, the envelope signal,
and the frequency characteristics. In the calculation of the
loss functions, the IQ data after compounding are used as
the ground truth. In the following, we denote r(n1, n2) and
i(n1, n2) as the real and imaginary parts of the ground truth

IQ data of an N1×N2 matrix, respectively. Let r̂(n1, n2) and
î(n1, n2) denote the real and imaginary parts of IQ data output
by ResU-Net, respectively. The loss based on IQ data, LIQ, is
defined by

(1)
LIQ =

1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

{
|r̂(n1, n2)− r(n1, n2)|

+
∣∣∣̂i(n1, n2)− i(n1, n2)

∣∣∣} .

The loss based on the envelope signal, LEnv, is defined by

(2)
LEnv =

1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

{∣∣∣∣√r̂(n1, n2)2 + î(n1, n2)2

−
√
r(n1, n2)2 + i(n1, n2)2

∣∣∣∣} .

The use of LEnv makes it possible to achieve a similar effect
of point spread to the envelope signal obtained by CPWC. Let
A(n1, k2) denote the amplitude and θ(n1, k2) denote the phase
obtained by 1D discrete Fourier transform of the real part of
the IQ data in the column direction, i.e., n2, respectively. The
loss based on the frequency characteristics, LFourier, is defined
by

LFourier =
1

N1K2

N1−1∑
n1=0

K2−1∑
k2=0

{
λA

∣∣∣Â(n1, k2)−A(n1, k2)
∣∣∣

+ λθ

(
1− cos (θ̂(n1, k2)− θ(n1, k2))

)}
,

(3)

where A(n1, k2) and θ(n1, k2) are the amplitude and phase
spectrum calculated from the real part of IQ data after
compounding, respectively, Â(n1, k2) and θ̂(n1, k2) are the
amplitude and phase spectrum calculated from the real part of
IQ data output by ResU-Net, respectively, k2 is the index of
discrete frequency, and λA and λθ are hyperparameters that
adjust the balance between amplitude and phase spectrum,
respectively. The use of LFourier makes it possible to close
the frequency spectrum of the output by ResU-Net to the
frequency spectrum of the ground truth of the RF signal. The
total loss function, L, used in training is defined by

(4)L = LIQ + λEnvLEnv + λFourierLFourier,

where λEnv and λFourier are hyperparameters that adjust the
balance among loss functions.

III. EXPERIMENTS AND DISCUSSION

This section describes a performance evaluation of the
proposed method for improving the quality of SPWI.
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Fig. 1. Overview of the proposed method and loss functions used in training.

TABLE I
CONFIGURATION OF SPWI/CPWC PAIRS FOR TRAINING, VALIDATION,

AND TEST IN OUR DATASET.

Target Train Val Test Total
Breast ultrasound examination phantom 2,800 400 800 4,000
Image quality assurance phantom 400 — 1,000 1,400
Subject #1 500 — — 500
Subject #2 — 200 200 400
Subject #3 — — 100 100
Total 3,700 600 2,100 6,400

A. Dataset

In the experiments, we use our SPWI/CPWC dataset1. This
dataset contains 6,400 pairs consisting of IQ data acquired by
SPWI and IQ data acquired by CPWC as shown in Table I. The
targets are the breast ultrasound examination phantom (BP),
the image quality assurance phantom (QAP), and the cervical
regions of three healthy subjects (Subject). The IQ data of
CPWC used as ground truth in the experiments are obtained by
coherently adding 75 beamformed IQ data acquired by varying
the transmission angle of the plane wave in the range of −16 ∼
16 degrees.

B. Experimental Condition

The dataset is separated into 3,700 pairs for training, 600
pairs for validation, and 2,100 pairs for test as shown in Table
I. The IQ data acquired by SPWI is padded to 384× 768 and

1https://github.com/gsisaoki/Improvement of Ultrasound Image Quality

normalized to have each element in the range [−1, 1]. We set
λA = 0.014, λθ = 0.026, λEnv = 0.560, and λFourier = 0.440,
which are optimized by Optuna [24]. AdamW [25] is used as
the optimizer, the learning rate is 1e-4, the batch size is 16,
and the number of epochs is 300.

We compare the performance of the proposed method
(“ResU-Net”) with that of the conventional method [15] (“Li
et al.”), the proposed method with the original U-Net (“U-
Net”), and the proposed method without DWT (“ResU-Net
w/o DWT”). Since the code for the conventional method
is not publicly available, we implemented it according to
[15] and trained it under the same experimental conditions
as the proposed method We employ “U-Net” in the Pytorch
implementation2 and evaluate it in the same environment as
the other methods. The experimental conditions for “U-Net”
are the same as for the proposed method, except for the
encoder architecture. The difference between “ResU-Net w/o
DWT” and “ResU-Net” is whether DWT is applied to IQ
data or not. We use the discrete Haar wavelet transform as
DWT in the experiments. All methods are implemented using
Pytorch 1.13.1 and evaluated on an AMD EPYC 7502 32-core
Processor and an A100 (80GB).

C. Evaluation Metrics

In this experiment, we evaluate image quality, lateral resolu-
tion, and contrast to compare the quality improvement of each

2https://pytorch.org/hub/mateuszbuda brain-segmentation-pytorch unet/
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TABLE II
EXPERIMENTAL RESULTS FOR EVALUATING IMAGE QUALITY, WHERE THE VALUES IN BOLD INDICATE THE HIGHEST VALUES FOR EACH METRIC.

Method PSNR [dB] ↑ SSIM ↑ LPIPS ↓
BP QAP Subject BP QAP Subject BP QAP Subject

SPWI (Input) 17.25 16.05 14.74 0.217 0.218 0.222 0.437 0.436 0.447
Li et al. [15] 20.28 19.03 18.93 0.310 0.313 0.260 0.635 0.590 0.635
U-Net [17] 14.50 13.13 14.80 0.115 0.086 0.110 0.625 0.624 0.628
ResU-Net w/o DWT 17.17 17.62 16.78 0.314 0.351 0.243 0.461 0.430 0.485
ResU-Net 17.68 17.76 17.24 0.301 0.336 0.223 0.469 0.435 0.459

TABLE III
EXPERIMENTAL RESULTS FOR EVALUATING LATERAL RESOLUTION AND

CONTRAST, WHERE THE VALUES IN BOLD INDICATE THE HIGHEST VALUES
FOR EACH METRIC.

Method FWHMt ∆FWHM CR GCNR ↑[%] ↑ [µm] ↑ [dB] ↑
SPWI (Input) 76.38 — 4.95 0.379
CPWC (GT) 93.17 — 7.34 0.521
Li et al. [15] 83.27 -36.28 6.31 0.612
U-Net [17] 92.32 217.841 4.41 0.410
ResU-Net w/o DWT 92.83 133.375 8.35 0.477
ResU-Net 89.98 93.17 7.54 0.445

TABLE IV
COMPARISON OF FLOPS, THE NUMBER OF PARAMETERS, AND

INFERENCE TIME OF EACH METHOD.

Method FLOPS # of Inference time [ms]
parameters GPU CPU

Li et al. [15] 139.57B 13.40M 54.64 487.5
U-Net [17] 217.11B 31.04M 55.45 740.8
ResU-Net w/o DWT 32.49B 24.35M 54.49 183.0
ResU-Net 8.53B 24.37M 55.09 53.12

method. For evaluating the image quality, we employ Peak
Signal to Noise Ratio (PSNR), Structural Similarity (SSIM)
[26], and Learned Perceptual Image Patch Similarity (LPIPS)
[27]. Higher values for PSNR and SSIM indicate higher image
quality, while lower values for LPIPS indicate higher image
quality. LPIPS is known as an image quality evaluation metric
that is closer to human perception compared to PSNR and
SSIM [27]. For evaluating the lateral resolution, we employ
FWHMt and ∆FWHM, which are based on the Full Width
at Half Maximum (FWHM). For the 4,949 wire targets in
QAP, FWHM is the width of the pixel that is −6dB from
the peak value of the point spread function in the horizontal
direction. FWHMt is the ratio of the number of wire targets
whose FWHM is below the threshold t [µm] out of 4,949 wire
targets. In the experiments, we set t = 1, 580µm to take into
account the width of the adjacent wire targets. ∆FWHM is
the difference of FWHM between the single plane-wave image
and the generated image for a wire target whose FWHM is
less than the threshold t [µm] in the single plane-wave image,
the compound image, and the generated image. For evaluating
the contrast, we employ Contrast Ratio (CR) and Generalized
Contrast-to-Noise Ratio (GCNR) [28]. In the experiments,
CR and GCNR are calculated for the surrounding regions of
813 grayscale targets in QAP, and their average are used for
evaluation.

D. Results and Discussion

Table II shows the results of quantitative evaluation of image
quality for each method. The conventional method has the
highest PSNR. Since PSNR evaluates image quality based on
the root-mean-square of the differences in the pixel areas of
the generated and compound images, the conventional method,
which is trained using the L1 loss between the images, has
the advantage. For SSIM, ResU-Net w/o DWT is the highest
for BP and QAP, and the conventional method is the highest
for Subject. For LPIPS, ResU-Net w/o DWT is the lowest
for BP and QAP, and ResU-Net is the lowest for Subject.
Comparing U-Net and ResU-Net w/o DWT, ResNet is suitable
as an encoder for improving the quality of SPWI, since ResU-
Net w/o DWT is better on all metrics. ResU-Net w/o DWT
and ResU-Net exhibit similar performance on all metrics.
Considering that LPIPS is the closest to human subjective
evaluation among the three evaluation metrics [27], ResU-Net
w/o DWT and ResU-Net can produce ultrasound images with
quality close to that of compound images. Table III shows the
results of the quantitative evaluation of the lateral resolution
and contrast for each method. The conventional method is
lower than the other methods in all metrics except for GCNR.
ResU-Net w/o DWT performs slightly better than ResU-Net on
all metrics. Table IV shows FLOPS, the number of parameters,
and the inference time on GPU and CPU for each method.
ResU-Net w/o DWT and ResU-Net achieve fewer FLOPs
than the other methods. ResU-Net reduces FLOPS to about
1
4 compared to ResU-Net w/o DWT. The inference time on
GPU is similar for all methods, while ResU-Net achieves
the shortest inference time on CPU at 53.12 ms. ResU-Net
is particularly suitable for general ultrasound systems, which
are often configured with a CPU. From the above results, we
have demonstrated that the loss functions that take into account
the characteristics of the RF signal can produce high-quality
ultrasound images, and that the use of DWT can reduce the
computational complexity and inference time.

IV. CONCLUSION

We proposed a method for improving the performance of
SPWI using U-Net and DTW. The proposed method uses IQ
data as the input and output of U-Net and to represent the
high frequency component of the ultrasound signals and loss
functions that take into account the effect of the point spread
and the frequency characteristics of the RF signals. We also
reduce the computational complexity and inference time by
inputting the IQ data after DWT into U-Net. We demonstrated
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Fig. 2. Examples of ultrasound images generated by each method: (a) BP, (b) wire target in QAP, (c) grayscale target in QAP, (d) grayscale target in QAP,
and (e) Subject.

the effectiveness of the proposed method through a set of
experiments using our image dataset. In the future work, we
will apply the ultrasound images whose quality is improved by
the proposed method to the analysis of dynamic organs such
as the heart.

REFERENCES

[1] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside
Out. Academic Press, 2004.

[2] P. Hoskins, K. Martin, and A. Thrush, Diagnostic Ul-
trasound: Physics and Equipment. CRC Press, 2019.

[3] J.-Y. Lu, H. Zou, and J. F. Greenleaf, “Biomedical
ultrasound beam forming,” Ultrasound in Medicine and
Biology, vol. 20, no. 5, pp. 403–428, Apr. 1994.

[4] J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear
imaging: A new technique for soft tissue elasticity
mapping,” IEEE Trans. Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 51, no. 4, pp. 396–409, Apr.
2004.

[5] M. Fink and M. Tanter, “Multiwave imaging and super
resolution,” Physics Today, vol. 63, no. 2, pp. 28–33,
Feb. 2010.
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