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Abstract—Moving Object Detection (MOD) is essential for
surveillance videos, but the large data volume necessitates signifi-
cant computational resources. Cloud computing offers a solution,
though it raises privacy concerns. In this paper, we propose a
secure MOD framework based on the Detection Transformer.
The user-side protects video data using format-compatible se-
lective video encryption before storing it in the cloud. In the
cloud, we design a method to extract encrypted domain motion
information from encrypted videos. Due to the dual constraints of
compression and encryption, the extracted information is highly
sparse, and common deep learning methods do not perform
well. To address this issue, we propose a Convolutional Neural
Network (CNN)-Transformer feature enhancement-fusion method
to achieve effective feature alignment and fully exploit deep-
level motion information. Specifically, we modulate CNN features
at multiple scales using Transformer features, where high-level
semantic information and low-level spatial information are fused
for accurate moving object localization. We evaluate our model
on the VIRAT and DUKE-MTMC datasets, demonstrating better
detection performance and greater robustness in challenging
scenarios compared to previous secure MOD methods.

I. INTRODUCTION

In recent years, visual tasks such as moving object detection
(MOD) in videos have become a major focus of artificial
intelligence research. Given the extensive and voluminous na-
ture of surveillance video datasets, the necessity for automated
MOD is imperative. Local processing of these large datasets
can be sluggish, prompting many users to opt for cloud-based
solutions. However, uploading unencrypted videos to the cloud
poses potential privacy risks. Therefore, it is necessary to
implement privacy-enhancing methods on video data before
storing it in the cloud. Fig. 1 shows the process of cloud
encrypted video processing.

Initial MOD methods [1]–[4] for encrypted domain videos
relied on traditional machine learning techniques, resulting in
low detection accuracy. With the advancement of deep learn-
ing, neural network-based MOD models have greatly outper-
formed traditional methods. However, due to the disturbance
of pixels in encrypted frames, deep learning MOD cannot be
directly applied to encrypted videos. Tian et al. [5] proposed
the first deep learning-based encrypted domain compressed
video MOD framework. Nevertheless, Tian’s method has areas
for improvement. Firstly, their use of Convolutional Neural
Network (CNN) models for MOD, which depends on anchor

Fig. 1. The cloud-based surveillance system model.

boxes and complex post-processing steps. Secondly, CNNs
primarily capture local object localization features without
considering global features, which is inadequate for detecting
complex scenes with long-range dependencies. Finally, the
motion features extracted from encrypted domain compressed
video bitstreams are sparser, and Tian’s method did not fully
utilize these sparse motion features.

Visual Transformers [6]–[8] have developed rapidly and
significantly improved detection performance. However, no
research has yet applied Transformers to MOD in encrypted
compressed videos. Additionally, CNNs and Transformers
learn different types of features—CNNs mainly capture lo-
calization features such as edges and lines around objects,
while Transformers capture global pixel relationships and high-
level semantic features. Many studies have shown that fusing
these features benefits various visual recognition tasks [9],
[10]. Given the sparsity of motion features extracted from
encrypted compressed videos, feature fusion can fully leverage
these sparse features, making it important to explore how to
enhance model detection performance through this fusion.

In this paper, we design a novel Transformer-based se-
cure MOD framework for compressed videos. Our approach
employs the Selective Encryption (SE) technique to encrypt
the compressed video bitstream, achieving an optimal bal-
ance between encryption efficiency and privacy. We extract
encrypted domain motion information by leveraging entropy-
encoded syntax elements from the compressed video bitstream
and input it into the Deformable-DETR [11] model, using
Swin-Transformer [12] as the backbone to extract multi-level
features. These features are then fed into the encoder and our
CNN-Transformer feature fusion module, with the encoder’s



output also serving as input to the feature fusion module, and
the final output being fed into the decoder.

The core design of our network is the CNN-Transformer
feature enhancement and fusion module, which uses the
object localization features from CNN to assist the high-
level semantic features from Transformer, thereby increasing
feature diversity. Our module has two sub-modules. The spatial
enhancement module focuses on the position information of
objects, using deformable convolutions to improve the ability
to locate moving objects in occluded scenes and scenes with
many small objects. The channel fusion module optimizes the
channel distribution of features through global pooling and
hyperparameter adjustment, dividing the features into multiple
groups with semantic information characteristics captured by
the encoder, and finally merging the features with the cor-
responding group’s semantic information, achieving effective
information fusion within each group. Thus, our module
adeptly captures semantic and localization features, enabling
comprehensive and efficient inter-domain feature alignment,
fully exploiting the sparse information.

Our main contributions can be summarized as follows.
First, we design a Transformer-based framework specifically
for MOD in encrypted compressed videos, utilizing feature
enhancement and fusion to fully exploit motion features and
address the inherent sparsity of motion information in the
encrypted domain. Second, we develop a CNN-Transformer
feature enhancement-fusion module that captures and fuses
high-level semantic and low-level localization features for
effective inter-domain feature alignment. Third, experimental
results on the H.264 and H.265 formatted datasets reveal
that our model substantially improves accuracy in challenging
scenarios with crowded moving objects.

II. RELATED WORKS

Deep-Learning-Based MOD [13], [14] employed CNNs
to learn temporal and spatial features from video frames.
TransVOD [15] introduced a temporal Transformer to ag-
gregate spatial object queries and feature memories for each
frame. However, these models are designed for video frames
and are not suitable for the compressed domain. In encrypted
videos, pixel values are scrambled and no longer represent
accurate information. Existing deep learning MOD models
cannot learn effective motion representations from scrambled
pixels, making them unsuitable for encrypted videos.

Feature fusion is commonly used in various visual tasks.
FPN [16] merges features at different scales to construct multi-
layer feature maps, accommodating targets of different sizes.
AFF [9] proposed a multi-scale channel attention module to
better fuse features from different layers and scales. DA-
DETR [17] blended CNN features using Transformer features
at multiple scales for accurate object recognition and localiza-
tion. Unlike these methods, we explore a feature enhancement-
fusion method specifically for sparse encrypted compressed
information, focusing on the effective utilization of the infor-
mation. Moreover, we do not limit ourselves to the types of
features extracted by the backbone.

Bitstream-encryption-based methods [1]–[4] typically
employ format-compatible SE [18] to encrypt videos and then
extract syntax elements such as Motion Vector Differences
(MVD) from the encrypted compressed video bitstream. These
methods, while fast since they do not require decoding com-
pressed videos into frames, rely on traditional machine learning
methods with empirical parameter settings for detection, which
perform poorly in complex scenarios. To our knowledge, only
one piece of research proposes a deep learning-based MOD
framework for encrypted compressed video [5]. However, this
method uses only a CNN architecture to operate on motion
features, insufficiently utilizing sparse information, leaving
room for improvement in both detection accuracy and speed.

III. PROPOSED SECURE MOD SCHEME WITH
CNN-TRANSFORMER FEATURE FUSION MODULE

We describe the main procedure of our secure MOD scheme.
First, compressed video bitstreams are encrypted locally and
then uploaded to a cloud server. In the cloud server, the
syntax elements are extracted from the encrypted bitstreams
and restructured into motion feature maps. These feature maps
serve as the input of our MOD Transformer, which consists
of a backbone for extracting feature pyramids, an encoder
for obtaining high-level semantic features, a CNN-Transformer
feature enhancement-fusion module for feature alignment, and
a decoder for annotating moving objects with bounding boxes.
Finally, the cloud server sends the MOD results to the local
terminal. We consider two popular attack models: Known
Ciphertext Model and Known Background Model, and the
security proof is the same as [5].

A. Privacy Enhancement on Video

Our secure MOD framework employs a format-compliant
SE method [19], [20] for privacy enhancement on H.264
and H.265 videos. This video encryption scheme mainly
encrypts intra-prediction modes (IPM), MVD, and residual
data. Encrypting these syntax elements ensures significant
spatial distortion in the reconstructed frames of the compressed
encoding and causes error pixels to propagate from I-frames
to reference frames, thereby protecting the visual content’s
privacy. We use H.265 encoding format as an example, but
our framework is applicable to H.264 videos as well.

Intra 4×4 and Intra 16×16 IPM are related to intra-
prediction data. For Intra 4×4 IPM, we encrypt the three
fixed-length code bits representing the selected mode. For
Intra 16×16 IPM, we encrypt the last bit of the codeword to
maintain the block encoding mode [18]. MVD and ref idx
are both related to inter-prediction data. Since suffix affects
the sign and value of the MVD, we encrypt all suffix bits
of the MVD. To maintain format compatibility, only the last
bit of ref idx is encrypted under specific conditions.

Discrete Cosine Transform (DCT) coefficients representing
residual data are quantized before entropy coding. We encrypt
all suffix bits of the Delta QP during the quantization pro-
cess. In Context Adaptive Variable Length Coding (CAVLC),
we encrypt all sign bits of the sign of TrailingOnes and



Fig. 2. Overview of the deep learning MOD part of the proposed framework.

level suffix codewords. This encryption process secures
both the signs and values of the residual data.

B. Syntax Elements Extraction

We denote the t-th frame as F (t), which is divided into a
series of 4×4 minimum coding unit blocks. The i-th block
is represented as bi(t). For each bi(t), the syntax elements
contained are represented as ci(t), mi(t) and di(t), corre-
sponding respectively to the consumed bits, MVD magnitude,
and residual density data. These syntax elements are not
affected by SE and can reflect certain motion information.

The consumption of coding bits can reflect the degree of
pixel changes caused by unpredictable motion, thereby reflect-
ing motion information. Assuming that a basic coding unit
block B(t) contains θ 4×4 blocks, ci(t) = ⌊ cit(B(t))×4√

θ
⌋, i ∈

I(t), where cit(·) is a function calculating the bit count of
the coding unit and I(t) = {i1, i2, · · · , ic} represents the set
of addresses of all 4×4 blocks within B(t).

Motion Vector (MV) can reflect motion information and
encoded as predictive MVs and MVD, but only MVD is
entropy coded in video compression standards. Therefore, we
use MVD to estimate motion information. mi(t) is defined
as mi(t) = ⌊

√
Lx(t)2 + Ly(t)2⌋, where Lx(t) and Ly(t) are

the lengths of the suffix codeword for the horizontal and
vertical components of the MVD, respectively. However, I-
frames are encoded independently and lack MVs, which can
cause confusion and temporal inconsistency in the model. To
address this, we interpolate MVs into I-frames using Inverse
Distance Weighted (IDW) temporal interpolation, leveraging
the strong spatial-temporal correlation of adjacent frames.

Given that the contour areas of moving objects undergo a
high degree of pixel substitution, these areas exhibit higher
density compared to background blocks, enabling the density
of non-zero DCT residuals di(t) to highlight the edges of
moving objects. We use dit(·) to denote the function that
calculates the number of non-zero coefficients in a DCT block.
Supposing a DCT block comprises δ 4×4 blocks, the residual
density di(t) is defined as di(t) = ⌊ dit(Bdct(t))√

δ
⌋.

Subsequent to the extraction of syntax elements, we reshape
ci(t), mi(t), and di(t) into two-dimensional matrices and
collectively refer to them as motion feature maps.

C. Deep Learning MOD Model using Detection Transformer

Since Deformable-DETR contains a feature pyramid struc-
ture, it can better focus on targets of different scales and
achieve feature fusion to a certain extent. In addition,

Deformable-DETR uses the deformable attention mechanism
to perform calculations in local areas of interest, which can
more flexibly adapt to changes in target shape and improve
the perception ability of the model in different scenarios.
Therefore, we use Deformable-DETR as our basic model to
extract the feature pyramid.

Our model consists of a backbone for feature extraction,
an encoder containing 6 encoder-layers, a CNN-Transformer
feature enhancement-fusion module, and a decoder with 6
decoder-layers for final predictions. Each encoder-layer and
decoder-layer contains a multi-head deformable attention
mechanism, residual connections and layer normalization, and
a feed forward neural network. As shown in the Fig. 2, the
feature pyramid B3-B5 extracted from the Swin-Transformer
backbone is transformed into multi-scale feature maps fi
(i = 1, 2, 3, 4) through a series of convolutions. Specifically,
B3-B5 are transformed into f1-f3 via 1×1 convolutions, while
the lowest resolution feature map f4 is obtained from B5 using
a stride-2 3×3 convolution. Then, f1-f4 is used as the input
of the encoder to obtain the Transformer features t1-t4. Next,
the CNN-Transformer enhancement-fusion module takes the
CNN features fi (i = 1, 2, 3, 4) and the Transformer features
ti (i = 1, 2, 3, 4) as input. An overview of the processing on
the encrypted video is shown in Fig. 2.

D. CNN-Transformer Feature Enhancement-Fusion Module

Syntax elements, extracted from encrypted domain com-
pressed video bitstreams, contains sparser information com-
pared to original RGB frames. Fully utilizing this motion in-
formation is challenging. Previous studies[9], [17] have shown
that feature fusion can improve feature utilization and detec-
tion accuracy. Therefore, we add a CNN-Transformer feature
enhancement-fusion module to Deformable-DETR. Notably,
our module is plug-and-play and can be integrated into any
DETR-like model. As illustrated in Fig. 3, the module takes
multi-scale motion feature maps and multi-scale Transformer
features as input. It comprises two parts: a spatial enhancement
module for object localization and a channel fusion module for
intra-group alignment.

1) Spatial-Enhancement Module: This module performs
convolution operations on the multi-scale feature maps fi
(i = 1, 2, 3, 4) to focus on regions related to moving objects,
enhancing the ability to locate objects in occluded scenes and
those with many small objects. We use deformable convolution
v2 [21] for sparse learning of low-level localization features,
allowing adaptive adjustment of convolution kernel sampling



Fig. 3. Overview of proposed CNN-Transformer feature enhancement-fusion
module.

positions to capture object location features more accurately.
This enhances the ability to locate moving objects in occluded
and densely populated scenes. We focus on the motion of each
object, learning offsets based on their spatial positions, and
then fusing the features of the same moving object:

si =

N∑
n=1

ωn · fi(pn +Opn
, c)· △ mn (1)

where si is the new CNN feature obtained from this module,
with each layer’s feature dimension matching the original
multi-scale feature map. N is the number of coefficient sam-
pling positions, pn+Opn

is the offset position of the target at
pn, and △mn is the self-learned importance scalar of pn.

2) Channel-Fusion Module: This module first adjusts the
features of si ∈ RC×Hi×Wi (i = 1, 2, 3, 4) based on task
importance within the channel, then groups CNN features ac-
cording to the number of Transformer feature groups obtained
from the encoder, and aligns and fuses each corresponding
CNN-Transformer feature group.

To clarify, let’s consider one layer of CNN feature s1
and its corresponding Transformer feature t1. We dynamically
adjust the weights of s1’s channels in the context of the
current detection task. Specifically, we first perform global
average pooling to reduce complexity, then use two fully
connected layers with ReLU activations and a normalization
layer. Finally, we use a hard-sigmoid function to normalize
the output weights to the range [-1,1] and adjust the channel
features using four hyperparameters:

s′1 = max
[
α1(s1) · s1c + β1(s1), α

2(s1) · s1c + β2(s1)
]

(2)

where
[
α1, β2, α2, β2

]
are hyperparameters controlling the

adjustment of channel weights.
Next, we flatten the processed CNN features. Noting that the

dimension of t1 is C×(H1×W1)×1, divided into k equal-sized
image blocks along the H1×W1 dimension. We flatten s′1 and
perform feature fusion on the corresponding image blocks:

V1 = flatten(s′1) + t1 (3)

TABLE I
ABLATION EXPERIMENTS ON FEATURE ENHANCEMENT-FUSION MODULE.

SEM CFM mAP AP50 AP75 APS APM APL

✕ ✕ 64.5 95.9 77.9 6.6 50.5 68.1
✓ ✕ 66.7 95.9 80.9 6.6 52.2 70.3
✕ ✓ 66.7 95.9 80.9 6.6 52.9 70.3
✓ ✓ 67.6 96.2 82.6 6.7 53.7 71.2

Finally, the aligned features Vi (i = 1, 2, 3, 4) are used as input
for the decoder.

IV. EXPERIMENT

A. Experiment Setups

Consistent with previous works[5], we established datasets
for our experiment from two large HD surveillance video
datasets: VIRAT and Duke-MTMC. VIRAT consists of 680
video clips containing 400,806 frames, while Duke-MTMC
includes 1,109 clips with 315,625 frames. We randomly se-
lected 70% of the video clips for training, 5% for validation,
and 25% for testing. We used the standard COCO Average
Precision (AP) accuracy metrics [22] to evaluate performance.
For loss calculation, we used L1 Loss with a weight of 5 for
bounding box loss, GIoU Loss with a weight of 2 for IoU
loss, and Focal Loss with a weight of 2 for bounding box
classification. The number of object queries was set to 300.
We used four NVIDIA GeForce RTX 3090 GPUs for model
training and testing. The training of our two-stage model was
optimized using the AdamW optimizer, with an initial learning
rate of 0.0002 and a weight decay of 0.0001.

B. Ablation Study

The proposed CNN-Transformer feature enhancement-
fusion module consists of the spatial-enhancement module
(SEM) and the channel-fusion module (CFM). We conducted
experiments on the Duke-MTMC dataset to examine their
contributions to our MOD model’s performance. Since SEM
primarily enhances Transformer features using CNN methods,
we used the fusion methods in CFM for feature integration
during the experiments. As demonstrated in Table I, adding
either module improved the model’s detection results. The
improvements from both modules were remarkably similar,
but adding CFM provided a greater boost in APM , likely
because channel fusion enhances the detection of medium-
sized objects. The combination of SEM and CFM achieved
the best 67.6% mAP, indicating that these structures are
complementary.

C. Comparison Study

1) Comparison with Existing Secure MOD Methods: We
compared our approach with secure MOD methods proposed
by Guo [1], Ma [2], Tian [3], Liu [4], and Tian [5]. The
first four methods use traditional machine learning for object
detection, while the last one employs deep learning. To en-
sure fairness, we used scenario-independent testing, excluding
VIRAT S 0400 from our training set. The results are shown
in Table II. Due to the absence of large objects in the



TABLE II
THE COMPARISON WITH ALL EXISTING TRADITIONAL METHODS ON THE

SCENE OF VIRAT S 0400.

Method mAP AP50 AP75 APS APM

Guo [1] 11.0 44.1 0.90 5.80 18.3
Ma [2] 13.6 60.9 1.20 15.5 11.0
Tian [3] 16.4 54.9 5.70 15.3 18.0
Liu [4] 16.1 70.6 1.60 17.6 14.1
Tian [5] 50.9 96.9 46.7 46.6 54.5

Ours 51.2 97.0 47.3 46.2 55.3

TABLE III
THE COMPARISON OF OUR METHOD AND TIAN [5] ON THE FULL DATASET.

Dataset Method mAP AP50 AP75 APS APM APL

Duke-
MTMC

Tian [5] 66.1 95.0 79.9 6.5 51.3 69.7
Ours 67.6 96.2 82.6 6.7 53.7 71.2

VIRAT Tian [5] 36.2 78.5 28.1 22.1 41.3 59.2
Ours 36.4 79.1 28.4 22.4 41.8 58.6

(a) Ma [2] (b) Tian [3]

(c) Liu [4] (d) Ours

Fig. 4. An example of visualization of results on the camera 7 0022 from
Duke-MTMC dataset. The red boxes represent the ground-truth and the green
boxes indicate the results. The results from traditional methods are derived
from their detection algorithms, and we use a confidence score threshold of
0.5 to display these bounding boxes.

scene, the result of APL is -1.000. Additionally, we compared
our method with existing deep learning MOD methods on
the complete VIRAT and Duke-MTMC datasets, as shown
in Table III. Our approach achieved the highest detection
performance on the VIRAT S 0400 video clip, except for
APS , and showed significant improvements over traditional
methods. On the complete Duke-MTMC and VIRAT datasets,
our method outperformed Tian’s [5] method, which used a
CNN-based approach. Our DETR-based deep learning method,
which integrates CNN and Transformer features, demonstrated
superior overall performance.

To further showcase our method’s superiority, we conducted
comparative experiments in challenging scenarios, such as
crowded and dynamic background scenes, and visualized the
detection results on plaintext frames. As exemplified in Fig. 4,
our method’s detection performance in overlapping target
scenarios is far superior to other methods.

2) Comparison with Existing MOD Models: Based on
Tian’s [5] comparative experiments, we compared our ap-

TABLE IV
THE AP50 COMPARISON BETWEEN MOD MODELS. T R REPRESENTS
T RETINANET, MR STANDS FOR MOTIONREC. D. DENOTES THE DATA

DOMAIN WHICH INCLUDES P.(PLAINTEXT) AND E.(ENCRYPTED) DOMAIN.

Method D. Sofa Parking Bungalows Overall
T R V1 P. 72.0−2.2 47.2−21.8 88.7+2.5 69.3−7.6

T R V2 P. 35.1−39.1 30.0−39.0 42.6−43.8 26.0−50.9

MR V1 P. 80.5+6.3 69.5+0.5 89.0+2.8 79.7+2.8

MR V2 P. 70.3−3.9 61.2−7.8 84.6−1.6 72.0−4.9

Tian[5] E. 74.2−0.0 68.8−0.2 86.0−0.2 76.3−0.6

Ours E. 74.2 69.0 86.2 76.9

proach with MotionRec and T RetinaNet proposed in [13]
on the datasets used in the respective paper. We encrypted
the dataset videos and split them into training and testing sets
according to the paper’s standards. We changed the detection
categories to three (background, person, vehicle) and used
the same evaluation metrics. We conduct experiments in all
scenarios and present the results for three of them. As shown
in Table IV, when MotionRec’s depth was 30, the plaintext
domain model achieved the best detection results. Although
our method did not achieve the highest AP value compared
to existing plaintext MOD methods, this is because plaintext
MOD methods can directly access more motion information.
In contrast, our method accesses limited motion information
from encrypted video bitstreams due to privacy protection
requirements.

However, it is noteworthy that our performance still sur-
passed three other plaintext MOD methods and was better than
Tian’s [5] deep learning MOD method. The slight difference
between our method and the best plaintext method validates
our framework’s effectiveness and superiority in encrypted
video MOD tasks. Additionally, MotionRec’s prediction speed
is only 2-5 fps, while our model achieves a detection speed of
42.2 fps, as it operates on compressed domain videos without
needing to decode them into frames.

D. Adaptation to Other Video Codec and Encryption

Our method is not dependent on the video’s encoding
format or the selective encryption method used. We conducted
experiments with H.264 and H.265 videos encrypted using
different methods, as shown in the Table. The results indicate
that the detection outcomes remain consistent regardless of the
encryption method used for the same video encoding format.
This consistency is because the encryption scheme does not
affect the syntax elements in the same encoded video stream,
resulting in identical extracted features. Additionally, detection
results slightly differ between H.264 and H.265 videos due
to compression efficiency differences, with H.265 yielding
sparser information, leading to slightly lower detection per-
formance compared to H.264.

V. CONCLUSIONS

We propose a Transformer-based deep learning secure MOD
framework for encrypted domain compressed videos. Our
approach uses SE to encrypt video bitstreams and then ex-
tracts motion information directly from the encrypted video,



TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED FRAMEWORK USING
VARIOUS ENCRYPTION SCHEMES APPLIED TO H.264/H.265 VIDEOS.

Encryption
Scheme

Video
Codec

VIRAT Duke-MTMC
mAP AP50 AP75 mAP AP50 AP75

Wang [23] H.264 37.1 79.2 30.3 67.9 96.3 82.8
Xu [18] H.264 37.1 79.2 30.3 67.9 96.3 82.8
Shahid [19] H.265 36.4 79.1 28.4 67.6 96.2 82.6
Sallam [24] H.265 36.4 79.1 28.4 67.6 96.2 82.6

which is used as input to the DETR model. We employ
a CNN-Transformer feature enhancement-fusion method for
effective feature alignment, improving the utilization of sparse
information. Experimental results demonstrate that our method
achieves advanced performance compared to other secure
MOD techniques, with superior detection capabilities.
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