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Abstract—With the increasing popularity of virtual techniques,
such as virtual reality (VR) and augmented reality (AR), super-
resolution (SR) of omnidirectional images has been crucial for
more immersive and realistic experiences. This advancement also
enhances the quality of images for various visual applications.
Researchers have started exploring omnidirectional image super-
resolution (ODISR). However, existing methods primarily address
the problem using synthetic data pairs, where low-resolution
(LR) images are generated using fixed, predefined kernels, such
as bicubic downsampling. Consequently, the performance of
these methods drops significantly when applied to real-world
data. To address this issue, in this paper, we propose exploring
the rich image priors from existing SR models designed for
2D planar images and adapting them for real-world ODISR.
Specifically, we employ low-rank adaptation (LoRA) to adapt
a large-scale model from the 2D planar image domain to the
omnidirectional image domain by training only the decomposed
matrices. This approach significantly reduces the number of
parameters and computational resources required. Experimental
results demonstrate that the proposed method outperforms other
state-of-the-art methods both quantitatively and qualitatively.

I. INTRODUCTION

With the development of virtual reality (VR) and augmented

reality (AR), omnidirectional images (ODIs) have become

increasingly prevalent in our daily lives, providing immersive

virtual scenes. High-resolution (HR) ODIs are essential for

these virtual scenarios, because they provide richer details and

textures. However, it is costly to capture, store, and transmit

HR ODIs [1]. Image super-resolution (SR) is a promising

technique to address this challenge, aiming to reconstruct HR

images from their low-resolution (LR) counterparts [2].

Recently, with the development of deep-learning techniques,

significant progress has been made in many computer vision

tasks [3], [4], including the field of omnidirectional image

super-resolution (ODISR) [1], [5]–[10]. Despite the remarkable

advancements in ODISR, existing methods still have several

limitations. A major drawback is their focus on synthetic im-

ages [11], where LR images are generated from the HR images

using fixed or predefined degradation methods, such as bicubic

downsampling. However, real-world omnidirectional images

suffer from complex and often unknown degradations, such as

noise, blurriness, and downsampling [12]. Consequently, meth-

ods trained on synthetic images perform poorly in real-world

scenarios, due to the substantial domain gap between synthetic

training images and real-world test images. In the field of

2D planar SR, numerous works [13], [14] have addressed

this problem by combining and mixing several degradations

to better simulate real-world conditions. BSRGAN [13] and

Real-ESRGAN [14] employ GAN losses to make the super-

resolved output more realistic in the training process. However,

GAN-based methods can be unstable, leading to undesirable

artifacts in the generated images [15]. Recently, generative

diffusion models, which utilize a Markov chain with hundreds

of inference steps, have demonstrated strong representation

abilities and have dominated many computer vision tasks,

including real-world image SR. Some methods [16]–[19] have

proposed leveraging the powerful capabilities of pretrained

large-scale text-to-image (T2I) models to provide image priors.

However, these diffusion-based methods have primarily been

developed for 2D planar images. To date, limited research has

been conducted in the field of ODISR to utilize large-scale

pretrained generative models for the reconstruction of ODIs.
To address these issues, we propose leveraging a well-

trained diffusion-based model, originally trained on a real-

world 2D planar dataset, to exploit the rich image priors for

the real-world ODISR problem. Specifically, to bridge the gap

between 2D image SR and ODISR, we adopt an advanced

parameter-efficient fine-tuning adapter, e.g., LoRA [20], to

adapt the large-scale pretrained 2D planar image SR model

to the ODISR model. LoRA is a low-rank decomposition

method that freezes the weights of pretrained model and de-

composes the weights of Transformer layers into trainable low-

rank matrices, significantly reducing the number of trainable

parameters. This allows us to efficiently transfer the well-

trained knowledge from the 2D image domain to the ODI

domain with a minimal number of trainable parameters.
The main contributions of this paper are as follows:

• Unlike previous works that focus on synthetic omnidi-

rectional image super-resolution (ODISR), we investigate

the challenge of real-world ODISR, where images are

subject to multiple degradations, such as noise, blur, jpeg

compression, and downsampling.

• We propose adopting the LoRA adapter to adapt a large-

scale pretrained model from the 2D image domain to

the ODI domain. By fine-tuning only the decomposed

weight matrices of the Transformer layers, this approach

significantly reduces the number of trainable parameters

and training time compared to the original large-scale

pretrained model.

• Experimental results demonstrate the effectiveness and

superiority of the proposed method quantitatively and

qualitatively.
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Fig. 1. The overview pipeline of the proposed method for real-world omnidirectional image super-resolution. Only A and B, which are low-rank decomposed
matrices of the pretrained weight matrix, are trainable.

II. RELATED WORKS

A. Omnidirectional Image Super-Resolution (ODISR)

Omnidirectional images are projected as 2D equirectan-

gular (ERP) images for image processing. LAU-Net [7] is

a progressive pyramid network to highlight the non-uniform

pixel density across latitudes in ERP images. However, train-

ing multiple network levels for different latitude bands is

computationally expensive and can result in inconsistencies

between the bands. Inspired by LIIF [21], SphereSR [9] creates

a continuous spherical image representation to predict RGB

values across various projection types. Although SphereSR

can flexibly resolve ODIs with arbitrary projection types, it

requires training multiple network branches for different pro-

jections. OSRT [47] utilizes Fisheye downsampling, applying

uniform bicubic downsampling on the original ODIs. OSRT

[1] was proposed to apply fisheye downsampling on the ODIs

to perform uniform bicubic downsampling on the original

ODIs. In addition, OSRT also proposes to adopt a deformable

attention mechanism to make full use of the distortion map

in the reconstruction. GDGT-OSR [10] proposes to utilize the

rectangle-window-based transformer [22] for better adapting

to the distortion of ERP images, and introduce the distortion-

guided mechanism to modulate the attention area.

However, the abovementioned methods primarily focus on

synthetic ODIs, which struggle to perform well on real-world

data. In this paper, we explore real-world ODISR to address

this problem.

B. Generative Models for Real-World Image Super-Resolution

In recent years, researchers have employed generative mod-

els, such as GAN [23] and diffusion networks [24], in the

field of real-world image SR. SRGAN [25] was the first to

adopt the GAN loss [23] in the SR training process to generate

photo-realistic images. BSRGAN [13] and Real-ESRGAN [14]

randomly shuffle the degradation of an image to generate

realistic training pairs. However, training GAN models is

unstable, and GAN models can easily generate unnatural

visual artifacts. Recently, researchers have started exploring the

potential of more powerful pretrained text-to-image models,

such as Stable Diffusion [26], for solving real-world image

SR problems. StableSR [16] employed a time-aware encoder

and a feature warping module to balance quality and fidelity.

PASD [17] feeds both low-level and high-level features into

the pretrained Stable Diffusion model with a pixel-aware cross-

attention module. SeeSR [19] takes both text prompts and

image embedding as input to improve generation performance.

Despite this advancement, limited research has been con-

ducted in real-world ODISR. In this paper, we aim to utilize

the rich image priors provided by large-scale pretrained models

to bridge the gap between 2D planar images and ODIs.

III. METHODOLOGY

A. Framework Overview

In this paper, we leverage a pretrained large-scale model that

exploits both text and image representations, e.g., SeeSR [19],

as our backbone. The overview pipeline, depicted in Fig. 1,

consists of a prompt extractor, text encoder, image encoder,

stable diffusion (SD) with ControlNet, and the LoRA adapter.

During the training phase, all modules except the LoRA

adapter are frozen. Specifically, we only train the decomposed

matrices, e.g., A and B in the LoRA module, which are the

low-rank matrices of the pretrained weight matrix. We applied

LoRA to query, key, value and output projection matrices in

the self-attention module, i.e., Wq,Wk,Wv,Wo.
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B. LoRA for Real-World Omnidirectional Image Super-
Resolution

Low-rank adaptation (LoRA) [20] is a parameter-efficient

training technique that inserts a small number of trainable

weights instead of fine-tuning all of the model’s parameters.

Based on the theory that pretrained models have a low “in-

trinsic rank” when adapting to a downstream task [27], LoRA

posits that the updates to the model weights, i.e., ΔW , still

have a low ”intrinsic rank” and can be projected into a small

space. The rank of a matrix represents the maximum number

of linearly independent vectors (rows or columns) in it. When

adapting a pretrained model to the downstream task, ΔW can

be approximated by a small number of linearly independent

vectors.

The bottom of Fig. 1 illustrates the mechanism of weight

parametrization using LoRA. When fine-tuning the pretrained

large-scale model, a large weight matrix W ∈ Rm×n are

decomposed into two trainable low-rank matrices, i.e., A ∈
Rr×n and B ∈ Rm×r, where the rank r � min(m,n). The

pretrained weights are kept unchanged. Then, the dot product

of the two low-rank matrices is added to the freezed pretrained

weight matrix. The forward pass with LoRA can be expressed

as follows:

xo = Wxi +ΔWxi = Wxi +BAxi, (1)

where xi and xo are input and output features, respectively.

Fig. 2. An example of an equirectangular projection image.

In this paper, we address the problem of real-world ODISR,

which is still a relatively unexplored area. In SR, omnidirec-

tional images (ODIs) are typically projected as equirectangular

projection (ERP) images for easier processing. Fig. 2 shows an

example of an ERP image, which exhibits various geometric

distortions due to the projection from a sphere surface (ODI)

to a 2D plane (ERP image). These distortions vary across

different latitudes, making ERP images distinct from common

2D planar images.

Significant advancements have been made in the field of

real-world 2D image SR [30]–[33], particularly with algo-

rithms utilizing recent large-scale models [16]–[19]. While

these advanced real-world SR models provide rich image

priors, directly applying 2D image SR models to ODIs is not

advisable due to the domain gap between these two image

types. One potential solution is to fine-tune large-scale real-

world 2D image SR models. Considering the vast number

of parameters in state-of-the-art (SOTA) large-scale models,

fully fine-tuning these models from scratch is inefficient and

requires substantial computational resources. To address these

issues, we propose using the parameter-efficient adapter LoRA

to adapt the 2D planar image SR model for ODIs. This ap-

proach not only maintains well-trained features for real-world

image SR, but also facilitates adaptation for the ODI domain

by training only a small number of parameters. Notably, the

LoRA adapter is applied to the query, key, value, and output

projection matrices in the self-attention module.

IV. EXPERIMENTS

A. Datasets

We adopt the ODI-SR dataset [7], which consists of 800

HR images with a resolution of 1024×2048, for training. For

testing, we use the ODI-SR testing dataset and the SUN 360

Panorama dataset [34]. Both testing datasets contain 100 HR

images with a resolution of 1024×2048. Due to the lack of

real-world ODI datasets, we follow the degradation pipeline of

Real-ESRGAN [14] to synthesize LR-HR training pairs from

these public datasets. The degradation involves Gaussian noise,

Poisson noise, blur, jpeg compression, and downsampling. The

scaling factor used in our experiments is 4. During training,

the training pairs are cropped into patches, with the HR image

patch size being 512×512.

B. Experimental Settings

We conducted all experiments using PyTorch [35]. For the

LoRA adapter, we set the rank of the A and B matrices to

4. The learning rate was set to 5 × 10−5, and the batch size

was 4. We use the constant learning rate schedule as SeeSR

[19] during the training process. The total number of training

iterations 50,000. We used AdamW [36] as the optimizer with

β1 = 0.9 and β2 = 0.999, and the weight decay is 0.01. We

ran the experiments on an Nvidia GeForce RTX 3090 GPU,

and the model was trained for approximately 2 days.

C. Experimental Results

1) Quantitative Comparison with State-of-the-Art Methods:
Table I shows the quantitative results of different methods

on the ODI-SR and SUN 360 Panorama test datasets. We

compare our method with other SOTA SR methods, such

as ESRGAN [28], SwinIR [29], PASD [17], and OSRT [1].

Notably, ESRGAN [28], SwinIR [29] and PASD [17] are

SR methods for 2D planar images, while OSRT [1] is a

SOTA method for ODISR. In addition, SwinIR [29] and

OSRT [1] are transformer-based methods, while ESRGAN

[28] and PASD [17] are photo-realistic SR methods based on

generative models. The backbone of our method is the model

proposed in SeeSR [19], which is also based on the generative

diffusion model. We use multiple evaluation metrics to evaluate

the performance of different methods. PSNR and SSIM are

common metrics for evaluating SR methods. NIQE [37] is

a no-reference image quality evaluation metric. FID [38] is
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE ODI-SR AND SUN 360 PANORAMA DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN

BOLD. THE SCALING FACTOR IS 4.

Methods
ODI-SR SUN 360 Panorama

PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓ PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓
Bicubic 21.22 0.5128 9.4243 0.6264 - 21.2177 0.5128 9.4243 0.6218 -

ESRGAN [28] 20.92 0.4871 8.8908 0.6299 116.97 20.78 0.4744 8.8908 0.6262 143.78
SwinIR [29] 20.87 0.4852 8.7825 0.6307 - 20.74 0.4722 8.789 0.6268 -
PASD [17] 21.18 0.5727 4.6861 0.4602 77.43 21.27 0.5783 4.6471 0.4593 75.52
OSRT [1] 19.70 0.4389 7.9834 0.6345 - 19.12 0.4213 7.7438 0.8153 -

Ours 21.51 0.5903 5.4967 0.4182 70.29 21.77 0.5989 5.3447 0.4307 66.02

TABLE II
COMPARISON RESULTS ON DIFFERENT RANKS IN LORA. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE SCALING FACTOR IS 4.

Rank Params
ODI-SR SUN 360 Panorama

PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓ PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓
r=4 1.59M 21.51 0.5903 5.4967 0.4185 70.29 21.77 0.5989 5.3447 0.4307 66.02
r=8 3.18M 21.51 0.5903 5.4967 0.4185 70.27 21.69 0.5965 5.3657 0.4181 65.4257

TABLE III
QUANTITATIVE RESULTS WITH DIFFERENT TRAINING DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE SCALING FACTOR IS 4.

Finetune Dataset
ODI-SR SUN 360 Panorama

PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓ PSNR↑ SSIM↑ NIQE↓ LPIPS↓ FID↓
DIV2K 21.49 0.5903 5.53 0.4174 68.98 21.74 0.6009 5.3904 0.4313 67.19
ODI-SR 21.51 0.5903 5.4967 0.4182 70.29 21.77 0.5989 5.3447 0.4307 66.02

Fig. 3. Qualitative comparisons among different methods on SUN 360 Panorama testing dataset. The scaling factor is 4.

an evaluation metric that measures the distance between the

distribution of images generated by a generative model and

the distribution of real images (ground truth). LPIPS [39] is

used to measure the perceptual similarity between two images.

The higher PSNR and SSIM represent the better performance,

while the lower NIQE, FID, and LPIPS mean the better results.

As can be seen from Table I, our method outperforms other SR

methods in most evaluation metrics on the ODI-SR and SUN

360 Panorama test datasets. In terms of the NIQE metric, the

proposed method is the closest to PASD [17], which achieves

the best result of NIQE. This demonstrates the effectiveness

and superiority of our method.

2) Qualitative Comparison with State-of-the-Art Methods:
Fig. 3 shows the visual results of different methods on the

SUN 360 Panorama test dataset. As we can see, although

SwinIR [29] and OSRT [1] perform well in restoring synthetic

images, their performance degrades significantly when tested

on real-world images which contain multiple and more com-

plex degradation. ESRGAN [28] also struggles to reconstruct

images with complex and severe degradation and introduces

many unpleasant artifacts, which is a drawback of the GAN-

based method. PASD [17] produces images that are too smooth

and cannot restore details. Furthermore, from the third row in

Fig. 3, we can see that PASD [17] restores the sky as the wall.

The possible reason is that PASD is based on a generative
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model, so it will generate some wrong content in some

situations. Our method can produce more visually pleasing

results with richer details and textures, which are closer to

ground truths. Qualitative comparisons between different types

of SR methods also demonstrate the superiority of the proposed

methods.

3) The Rank in LoRA: The rank r determines the dimension

of the trainable matrices, i.e., A ∈ Rr×n and B ∈ Rm×r,

in LoRA. A larger r represents more trainable parameters

and more computational resources. We compare the impact

and number of trainable parameters of different r on various

evaluation metrics. Table II shows the comparisons between

r = 4 and r = 8 on the two test datasets. Although the number

of trainable parameters of the model with r = 8 is 3.18M,

which is twice as large as that of the model with r = 4, i.e.,

1.59M, the model with r = 4 performs equally well, or even

better than the model with r = 8. One possible reason is that

the domain gap between 2D planar images and omnidirectional

images is not very large, so there is no need to fine-tune

a large number of parameters. Therefore, we set r = 4 as

the default value of the rank in our experiments. It is worth

mentioning that the number of trainable parameters is 1.13B

if the model is fully fine-tuned, which requires significantly

more computational resources compared to using LoRA.

4) Fine-tuning Using Different Datasets: After applying

LoRA, we fine-tune the model using different datasets, e.g.,

DIV2K and ODI-SR. DIV2K is a common SR dataset that

involves 800 HR 2D planar images for training. DIV2K and

ODI-SR represent two different image distributions. When

fine-tuning using these two different datasets, we keep the ar-

chitecture of the model and training configuration the same. As

shown in Table III, the model trained using ODI-SR performs

better than or on par with the model trained using DIV2K.

This illustrates that it is important to keep the distributions of

training data and test data consistent.

V. CONCLUSIONS

In this paper, we propose an efficient adaptation method for

real-world omnidirectional image super-resolution (ODISR).

Unlike previous real-world ODISR methods, we focus on

SR of real-world ODIs with more complex degradations.

Based on the advanced backbone for real-world 2D planar

images, we propose to adopt the low-rank adaptation (LoRA)

technique to adapt the SR domain from 2D planar images to

omnidirectional images (ODIs). On one hand, training the low-

rank decomposed matrices of the pretrained model is both time

and resource efficient. On the other hand, the knowledge of

pretrained model can be efficiently adapted to downstream

taskS. Quantitative and qualitative results demonstrate the

effectiveness and superiority of the proposed method.
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