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Abstract—With the fast development of 3D vision, 3D object
detection based on posed RGB images has become increasingly
popular and attracted significant attention from researchers
in recent years. Given the remarkable performance of Neural
Radiance Field (NeRF) in modeling 3D scenes, recent 3D detection
methods utilizing posed RGB images generated by NeRF models
have achieved promising results. However, NeRF-based models
often suffer from poor generalization and are prone to generating
inconsistent image content for unseen views, which inevitably
degrades the performance of existing NeRF-based 3D detectors.
In this paper, we propose an effective feature calibration method
to enhance the performance of 3D detection models based on
posed RGB images produced by NeRF models. Specifically, our
proposed method efficiently recalibrates the 3D features extracted
from the backbone network, and adaptively computes the weights
for fusion based on the statistical properties of the features.
Experiments show that our method significantly outperforms
the baseline model, achieving improvement of +8.6 AP@0.5,
+5.5 AP@0.5, and +5.1 AP@0.5 on the Hypersim, 3D-FRONT,
and ScanNet benchmarks, respectively, with anchor-free heads.
Particularly, compared with the baseline model, our method can
more accurately predict the 3D bounding boxes in 3D space, even
when objects are poorly reconstructed by NeRF while keeping low
computational costs with a minimal increase in model complexity.

Index Terms—3D Object Detection, NeRF, Channel Attention,
Multi-View

I. INTRODUCTION

3D object detection is a foundational topic in the 3D vision
tasks, attracting significant attention from researchers in recent
years due to its substantial industrial value in applications
such as robotics [1], autonomous driving [2], Virtual Reality
(VR) [3], Augmented Reality (AR) [4], etc. Most existing 3D
object detection methods rely on point clouds [5]–[8] and
depth images [9] because these data types provide precise
geometric information. However, obtaining highly accurate
geometric data typically requires costly 3D sensors, including
laser scanners, depth cameras, and stereo cameras, which can
be impractical for real-world applications. To reduce high
costs, 3D object detection methods based on posed RGB
images have been proposed [10], [11]. These methods lever-
age monocular techniques and have shown promising results.
However, monocular-based approaches are inevitably degraded
when faced with limited fields of view, occlusion, and scale
uncertainty. To address these issues, ImVoxelNet [12] adopts a
multi-view image for 3D object detection, effectively learning

feature representations of 3D voxel volumes from multi-view
2D images. Nonetheless, this method struggles with severe
occlusion and complex geometric information.

Recently, Neural Radiance Field (NeRF) [13] has demon-
strated remarkable capabilities in 3D scene representation and
novel view synthesis. Inspired by this, several 3D object
detection methods based on NeRF have been proposed, which
achieve promising performance [14]–[17]. For example, NeRF-
RPN [14] predicts the location of objects in 3D scenes using
posed RGB images rendered by NeRF. Specifically, it takes
NeRF outputs (i.e., color and density information) as input
to produce 3D bounding boxes. During feature extraction,
the feature maps received by the Region Proposal Network
(RPN) head are highly biased towards capturing local con-
texts, neglecting global information. This leads to regions of
interest that rely solely on local spatial information, further
deteriorating detection accuracy in complex 3D scenes.

In this paper, we propose a robust method to incorporate
global information into NeRF-based 3D detection methods,
thereby enhancing detection performance. In the human visual
system, global context (e.g., surroundings and background) is
crucial for object recognition, but previous methods have pre-
dominantly focused on local features. In contrast, our method
effectively fuses global and local features by employing a
3D Global Average Pooling (GAP) mechanism for a channel-
wise attention mechanism. Additionally, inspired by ECA-
Net [18], we propose an efficient method to learn the inter-
dependency between global and local features with negligible
additional cost. Consequently, our method can adaptively ag-
gregate global and local features, learning effective 3D feature
representations to enhance the accuracy of 3D object detection.

The contributions of this paper are summarized as follows:
• We demonstrate that incorporating global information can

enhance the quality of NeRF-based 3D object detection
from posed RGB images.

• We propose a novel framework for NeRF-based 3D object
detection that utilizes a channel attention module to
improve 3D feature representations and produce accurate
3D bounding boxes with minimal computational costs.

• Our experiments show that our proposed method can sig-
nificantly enhance 3D object detection accuracy and sup-
press an existing baseline by +8.6 AP@0.5, +5.5 AP@0.5,



and +5.1 AP@0.5 on the Hypersim, 3D-FRONT, and
ScanNet indoor datasets, respectively.

II. RELATED WORKS

A. Point Cloud-based 3D Object Detection

3D object detection from point clouds has achieved great
results in outdoor and indoor scenes because point clouds
provide reliable geometric structural information. It is divided
into two types: grid-based and point cloud-based approaches.
Grid-based approaches, such as VoxelNet [5] and PointPillars
[6], typically transform point clouds into 3D grids and use
3D CNNs to process the grid representation. However, this
approach is memory-intensive due to the dense volumetric
representation and the use of 3D CNNs. To mitigate this
problem, sparse fully-convolutional detection methods, such as
FCAF3D [19] and [20], have been introduced, improving the
quality of 3D object detection in both accuracy and efficiency.
Conversely, point cloud-based methods detect 3D objects from
the point clouds [7], [8]. These methods utilize deep Hough
voting, as proposed in VoxelNet [7], to predict bounding box
parameters from point features. However, voting-based 3D
detection methods pose challenges when used with reconstruc-
tion networks, since they need extra data annotation on the
point clouds. Recent point cloud-based methods have attracted
significant attention owing to their strong performance in 3D
detection, particularly with the emergence of various 3DGS
methods [21], [22], eliminating the need for expensive 3D sen-
sors. Methods that incorporate multi-views to enhance scene
understanding have also become more prominent. ImVoxelNet
[12] has achieved impressive results in indoor 3D detection
using the 3D voxel-based feature volume [23]. Nevertheless,
it fails to retain the inherent geometry of input scenes while
constructing the feature volume.

B. Channel Attention and Object Detection

In the field of computer vision, channel attention methods
are essential for improving the performance of deep CNNs
across various tasks [18], [24]–[27]. The main challenge for
convolutional networks is their limited ability to extract global
features, as the convolution kernels mainly focus on local re-
gions in space. To address this issue, channel attention methods
have been investigated and widely used to enhance the repre-
sentational power of networks by aggregating global informa-
tion. The Squeeze-and-Excitation (SE) block in a SE-Net [24]
has become a paradigm for channel attention, which assigns
learned weights to different channels of convolutional layers
and recalibrates the feature maps by capturing channel-wise
dependencies, thus improving detection performance. CBAM
[25] uses convolutions with large-size kernels to encode spatial
information. ECA-Net [18], based on SE-Net, employs 1D
convolutions to capture local cross-channel interaction while
resolving the negative effects of channel dimension reduction.
However, these techniques are mainly used for 2D object
detection. To improve the quality of 3D object detection using
NeRF from posed RGB images, this paper presents the 3D

Squeeze and Excitation Channel Attention (3D SE-CA) and
3D Efficient Channel Attention (3D ECA) modules.

III. METHODS

A. Overview

The architecture of our proposed method is illustrated in
Fig. 1. Following NeRF-RPN [14], our method uses a pre-
trained NeRF model and uniformly samples the volume density
and RGB color information to generate a feature volume. To
extract the feature maps, we employ a 3D backbone network.
Before passing the extracted feature maps to the Feature
Pyramid Network (FPN) [28], we integrate channel attention
mechanisms to enhance feature representation. Finally, the
RPN head uses the feature pyramid to produce a set of regional
proposals.

B. Sampling Input and Extracting Features

To obtain accurate 3D geometric information, we leverage
the capabilities of a pre-trained NeRF model. Thus, our net-
work directly produces 3D bounding boxes of Regions of In-
terest (ROIs) in 3D space by using the extracted 3D volumetric
information from NeRF as input. The extracted radiance and
density volume field are uniformly sampled in order to build a
feature volume. Each sample can be represented as (r, g, b, α),
where c = (r, g, b) represents the emitted averaged color and
α, the opacity, can be obtained as follows [14]:

α = clip (1− exp(−ρ · δ), 0, 1) , (1)

where ρ is the volume density and δ represents the distance
between two adjacent points, set to 0.01.

We employ a 3D backbone network to extract feature maps
after sampling inputs on the 3D grid and extracting RGB
and volume densities. Subsequently, we apply our 3D channel
attention methods to further extract channel-wise global infor-
mation and recalibrate the weight of each channel to boost
feature representation. We embed 3D SE-CA and 3D ECA
between the 3D backbone and 3D FPN to investigate the effect
of adding these channel attention methods and determine the
optimal placement for best performance.

The 3D FPN takes enhanced feature maps from the chan-
nel attention module to produce multi-scale feature volumes,
addressing scale variation issues in images and improving the
ability of the model to accurately detect objects of various
sizes. The 3D FPN exploits all layers of the backbone network,
i.e., C2, C3, C4, and C5, to produce a feature pyramid com-
prising P2, P3, P4, and P5. We apply the channel attention
module to the output of each bottom-up feature map, i.e.,
C2, C3, C4, and C5, before passing them to each top-down
feature map, i.e., P5, P4, P3, and P2, as illustrated in Fig.
1. Thus, the P2, P3, P4, and P5 feature maps acquire global
information from the channel attention module, which is then
passed to each layer of a top-down pathway of the 3D FPN.
Finally, the 3D RPN takes the feature pyramid produced by
the 3D FPN block as input to generate 3D bounding boxes.



...

C2

C3

C4

C5
Channel Attention

Module

Channel Attention
Module

Channel Attention
Module

Channel Attention
Module

P2

P3

P4

P5

N
on

-M
ax

im
um

Su
pp

re
ss

io
n 

Detection
Head

Feature Extractor Network

Object Detection Network 
3D Bounding Box

Input Multi-view 
Images

Sampling Points

Fig. 1. Overview of our proposed method. Given multi-view images, NeRF retrieves 3D geometric information to improve the 3D detection pipeline. We use
VGG19 to extract 3D feature maps and apply a channel attention module on each feature to learn channel importance with global information. The 3D FPN
takes both global and local features to produce a feature pyramid, which is subsequently utilized by the detection head to produce accurate 3D bounding boxes.

C. 3D Squeeze and Excitation Channel Attention Module

The proposed 3D SE-CA module extends the 2D SE blocks
presented in [24] to a 3D version (see Fig. 2), focusing on
channels with more informative features in the 3D features map
to improve 3D object detection performance. In the SE block,
the transformation Fse is divided into the squeeze operation
Fsq and the excite operation Fex. In Fsq , a 1 × 1 × 1 × C
sized feature map is generated to obtain channel-wise global
information statistics while keeping the number of channels C
constant using 3D GAP. The output is produced by squeezing
input U through the spatial dimensions of D × H × W and
indicated by zi = Fsq(ui), which belongs to Z ∈ RC . The
Fsq is expressed as follows:

zi =
1

(D ×H ×W )

D∑
i=1

H∑
j=1

W∑
k=1

ui(i, j, k), (2)

where D, H , and W denote the depth, height, and width,
respectively. We set U = Ftr(X), where X is an input feature
and U = [u1, u2, . . . , uc], ui ∈ RD×H×W , is the output
feature. The channel-wise output of Fsq modulates the inter-
dependencies of all channels via excitation. The Fex receives
Z and learns the inter-channel interactions leveraging two fully
connected layers, as follows:

si = σ(W2δ(W1Z)), (3)

where σ represents sigmoid activation function, δ denotes
ReLU function [29], W1 ∈ R

C
r ×C includes parameters for

dimensionality-reduction, and W2 ∈ RC × C
r includes pa-

rameters for dimensionality-increasing layers and r = 16. A
channel-wised multiplication Fscale between each feature map
ui and excitation scalar si is ultimately employed to produce
final re-scaling feature output U , as follows:

U = Fscale(ui, si) = ui · si. (4)

D. 3D Efficient Channel Attention Module

We extend the original 2D ECA-Net [18] to the 3D version
and integrate it with NeRF-RPN [14] for 3D object detection.
This module captures local cross-channel interactions while
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Fig. 2. The 3D Squeeze and Excitation Channel Attention Module.

alleviating the negative impact of channel dimension reduction
by using a 1D convolution with adaptive kernel sizes, replac-
ing traditional fully connected layers. This process includes
GAP, followed by 1D convolution and sigmoid activation to
modulate an input feature map (see Fig. 3). The output from a
convolution block is denoted as x ∈ RW×H×D, where W ,
H , and D are width, height, and depth, respectively. The
feature map is forwarded to a 3D ECA block to enhance
the network representation ability by applying the channel
attention mechanism. In the 3D ECA module, the 3D GAP
of the channel dimension is computed as follows:

g(x) =
1

(HWD)

H,W,D∑
i=1,j=1,k=1

xi,j,k, (5)

where g(x) represents features after global average pooling.
Moreover, channel weights are calculated as follows:

ω = σ(Wpg), (6)

where σ denotes a sigmoid function and Wp is a parameter
matrix for the channel attention, calculated as follows:
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...
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 , (7)

where Wp involves p×C parameters. Based on (7), the weight
of gi is computed as follows:

wi = σ
( p∑
j=1

wjgj
)
, gj ∈ Ωp

i , (8)
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Fig. 3. The 3D Efficient Channel Attention Module.

where Ωp
i represents the p-set of gi adjacent channels. Alter-

natively, the above computation can be performed using 1D
convolutional operation with the kernel size of p. Thus, the
channel features in the gx are derived as follows:

ω = σ (C1Dp(gx)) , (9)

where C1D denotes one dimension convolution and p = 3.

E. 3D Detection Head and Loss Functions

We utilize a 3D RPN head to produce object proposals from
the feature pyramid and adopt the loss functions from [14]. We
conduct experiments on anchor-free and anchor-based methods
to compare the results with the baseline method. We utilize the
same loss function as in [30] for the anchor-based method:

L ({pi} , {ti}) =
1

Ncls

∑
i

Lcls (pi, p
∗
i )

+
λ

Nreg

∑
i

p∗iLreg (ti, t
∗
i ) ,

(10)

where i represents an anchor index, ti stands for box offsets,
and t∗i denotes the ground-truth bounding boxes. pi and p∗i
correspond to predicted objectness and ground-truth label,
respectively. Lcls and Lreg denote the classification loss and
smooth L1 loss, respectively, as presented in [31]. Ncls and
Nreg represent the number of anchors utilized in the classifi-
cation and regression loss computation, respectively, and λ is
used to balance these two losses. For anchor-free methods, the
centerness loss is added to obtain the final loss function [32]:

L ({pi} , {ti} , {ci}) =
1

Npos
Lcls (pi, p

∗
i )

+
λ

Npos
p∗iLreg (ti, t

∗
i ) +

1

Npos
p∗iLctr (ci, c

∗
i ) ,

(11)

where Npos represents the number of positive samples, λ
denotes balance factor, Lcls is the focal loss, Lreg is the IoU
loss for rotated boxes [33], and Lctr is the centerness loss.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

In our experiments, we mainly follow NeRF-RPN [14],
including backbones, detection head, training recipe, datasets
etc. Three indoor datasets, Hypersim [34], 3D-FRONT [35],
and ScanNet [36], which were constructed as NeRF datasets
for 3D object detection by [14], are used. We utilize the NeRF
implementation from Instant-NGP [37] to reconstruct them.

Hypersim is the photorealistic synthetic dataset for indoor
scene understanding, containing 77,400 images of 461 indoor
scenes. For NeRF training in 3D object detection, [14] thor-
oughly cleaned data based on NeRF reconstruction quality and
object annotation usefulness, retaining about 250 scenes.

3D-FRONT is the large-scale dataset with professionally
designed synthetic indoor scenes that contain room layouts and
textured 3D models of furniture. From the dataset, 159 rooms
and their bounding boxes were manually chosen, cleaned, and
rendered to generate the NeRF dataset for 3D object detection.

ScanNet is the widely used dataset for indoor 3D detection,
containing 2.5 million views from 1513 RGB scans. For each
scene, video frames were divided into 100 bins, and bounding
boxes were computed from annotated meshes [14]. Models
were trained using a given depth and depth-guided NeRF [38].

We use AdamW [39] optimizer with the weight decay of
10−3 and the initial learning rate of 3× 10−4. For Equations
(10) and (11), λ is set to 5.0 and 1.0, respectively. During
testing, the top 2,500 proposals are chosen, and redundant
proposals are eliminated using Non-Maximum Suppression
(NMS), based on rotated IoU with a threshold of 0.1. We
train our models using NVIDIA RTX 4090 GPUs with various
model configurations on the three datasets. During inference,
our method achieves high accuracy with a lower compu-
tational cost, with a run time of 61 seconds compared to
67 seconds for the baseline, on the 3D-FRONT dataset. On
the Hypersism dataset, the run time of our method is 139
seconds, nearly equivalent to 138 seconds for the baseline
on a single GPU, while it significantly enhances 3D object
detection performance. We evaluate the methods mainly by
average precision (AP) and recall (R) scores with 0.25 IoU
and 0.5 IoU thresholds.

B. Experimental Results

We compare our proposed method with existing baseline
methods [12], [14], [19], as depicted in Table I. Using VGG19
as the backbone network, with anchor-free and anchor-based
RPN heads, we observe that the proposed channel attention
methods, 3D SE-CA and 3D ECA, outperform the baseline
NeRF-RPN by achieving higher recall scores and AP on all
three datasets. This implies that channel attention is beneficial,
and our method can effectively enhance 3D object detection
performance. Specifically, 3D ECA has made significant im-
provements compared to the baseline in AP@0.5 on Hypersim
(+8.6), 3D-FRONT (+5.5), and ScanNet (+5.1) with anchor-
free head. The improvement, particularly in the AP@0.5
evaluation metric, shows that our method is capable of better
integrating global information from multi-view and adaptively
recalibrating channel weights, thus improving the quality of
predicted 3D bounding boxes. Channel-wise interactions have
significantly boosted feature representation.

We present visualizations of the predicted 3D bounding
boxes generated by NeRF-RPN and our method with anchor-
free head, as depicted in Fig. 4. We note that our method
provides accurate detection predictions even on objects poorly



TABLE I
QUANTITATIVE COMPARISON WITH EXISTING METHODS ON 3D-FRONT, SCANNET AND HYPERSIM. THE BEST PERFORMANCES OF DIFFERENT

EVALUATION METRICS ARE HIGHLIGHTED IN BOLD, WHILE DIFFERENT SETTINGS ARE IN BLUE. R INDICATES A RECALL SCORE AT AN IOU THRESHOLD.

Methods 3D-FRONT ScanNet Hypersim
R@0.25 R@0.5 AP@0.25 AP@0.5 R@0.25 R@0.5 AP@0.25 AP@0.5 R@0.25 R@0.5 AP@0.25 AP@0.5

ImVoxNet [12] 88.3 71.5 86.1 66.4 51.7 20.2 37.3 9.8 19.7 5.7 9.7 2.3
FCAF3D [19] 89.1 56.9 73.1 35.2 90.2 42.4 67.7 18.5 47.6 19.4 30.7 8.8

NeRF-RPN (anchor-based) 97.8 76.5 65.9 43.2 88.7 42.4 40.7 14.4 57.1 14.9 11.2 1.3
Ours (3D SE-CA) 98.5 82.4 71.8 52.6 86.2 38.9 41.2 15.5 60.3 18.1 12.1 2.4
Ours (3D ECA) 97.8 79.4 71.9 53.3 88.2 41.4 40.6 16.2 57.1 19.4 14.8 2.9

NeRF-RPN (anchor-free) 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4 66.7 27.3 30.9 11.5
Ours (3D SE-CA) 97.8 75.7 86.4 64.5 89.7 43.8 56.9 23.5 71.4 31.8 33.4 20.1
Ours (3D ECA) 97.1 77.2 86.9 65.4 91.6 44.3 58.8 23.4 70.2 30.2 35.4 18.4

NeRF-RPNGround Truth Ours

Fig. 4. Qualitative results of 3D object detection on the 3D-FRONT dataset.
Compared to the baseline method NeRF-RPN, our method demonstrates
superior performance in accurately predicting the 3D bounding boxes in 3D
space.

reconstructed by NeRF in 3D space (see last row). 3D ge-
ometry in NeRF plays a significant role in region proposal
tasks and poor NeRF reconstruction can seriously impair
the prediction. However, our method can still detect them
accurately compared to the baseline method.

C. Ablation Studies

We conducted the ablation study to examine the effect
of adding a channel attention module to the output of each
bottom-up feature map from the backbone network before
passing them to corresponding top-down feature maps. To
determine the optimal placement, we tested the module be-
tween various combinations of feature maps: {C5} and {P5},
{C4, C5} and {P4, P5}, {C3, C4, C5} and {P3, P4, P5},
and finally among all feature maps, as shown in Table II.

From the experiment results, it is evident that the best per-
formance is attained when the channel attention module is
located between all feature map levels {C2, C3, C4, C5} and
{P2, P3, P4, P5}. This configuration allows feature maps
{P2, P3, P4, P5} to effectively acquire channel-wise global
information, thus enhancing detection accuracy.

TABLE II
ABLATION STUDY OF ADDING CHANNEL ATTENTION MODULE AT

DIFFERENT LEVELS OF FEATURES BETWEEN THE 3D VGG19 BACKBONE
AND 3D FPN ON 3D-FRONT DATASET. LEVELS 1, 2, AND 3 REPRESENT

THE NUMBER OF LAYER COMBINATIONS WE UTILIZED.

Methods 3D-FRONT
R@0.25 R@0.5 AP@0.25 AP@0.5

3D ECA LEVEL1 97.0 73.5 83.6 60.0
3D ECA LEVEL2 97.0 74.3 86.0 63.6
3D ECA LEVEL3 96.3 75.7 86.0 63.8

Ours 97.1 77.2 86.9 65.4

V. CONCLUSIONS

In this paper, we proposed effective attention-based feature
calibration mechanisms to enhance the performance of NeRF-
based 3D detection from multi-view RGB images. Specifically,
we investigated 3D SE-CA and 3D ECA modules, to incorpo-
rate global information into 3D feature maps extracted from
the backbone network to enhance feature representation. The
downstream detection network based on the enhanced features,
with more discriminative power, achieves better performance
in the challenging domain of 3D space. Our experimental
results demonstrate that our method outperforms the baseline
NeRF-RPN on all three datasets: Hypersim by 8.6 AP@0.5,
3D FRONT by 5.5 AP@0.5, and ScanNet by 5.1 AP@0.5,
with an anchor-free RPN head. These results not only illustrate
the importance of channel attention mechanisms in 3D object
detection tasks, but also provide valuable insights into the
critical factors to achieve optimal performance in this area.
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