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Abstract—Novel view synthesis is a challenging task that
generates multi-view images from a single-view object by recon-
structing the depth and spatial information between the camera
and the object. This task specifically facilitates the rendering of
2D objects into 3D representations from monocular video scenes.
Existing methods suffer from depth information loss between the
camera and object when provided with limited single-view input
images, resulting in poor reconstruction accuracy in 3D space.
Moreover, they lack a high-level depth feature map representation
of scene information. Therefore, we propose a multilayer encoder-
decoder architecture-based network that efficiently predicts the
focal length between the object and camera from a mono-view
image. Additionally, we utilize a combined feature extraction
strategy from the estimated depth feature map and RGB input
image to synthesize novel views. While the encoder network
extracts semantic high-level features at multiple scales, the de-
coder network refines these combined features for synthesis. Our
method effectively improves depth information retention while
achieving good reconstruction performance. Experimental results
evaluated on a benchmark dataset demonstrate the efficacy of our
proposed method.

I. INTRODUCTION

The need for an accurate camera focal length estimation
directly facilitates facial alignment analysis for biometric
applications [1], subject-to-camera distance estimation [2],
automatic camera calibration, 3D-object reconstruction, novel
view synthesis [3], and several other crucial computer vision
applications. Among all these applications, novel view syn-
thesis is a significant computer vision task that can generate
new viewpoints of an object from single-viewed images.
Traditional novel view synthesis methods use fixed camera
intrinsic parameters, such as camera focal lengths. However,
these methods are unable to synthesize novel views of an object
from in-the-wild images due to the unavailability of camera
intrinsic parameters. Hence, this computer vision problem of
camera focal length estimation from in-the-wild images has
gained the attention of many researchers in the past few years
[4].

Some depth-based novel view synthesis methods have been
proposed from single-viewed images using disocclussion fill-
ing approach [1], [5]. Kim and Kim [6] proposed a machine
learning-based novel view synthesis module using pixel gener-
ation and flow prediction. They investigated the performance
variations based on the skip connections. Their method of
using 3 skip connections for flow predictions returned SSIM
loss scores of 0.9181 and 0.8903 for object categories ”Car”

and ”Chair”, respectively. The results indicate that there is
still room for improvement since the higher the SSIM score,
the better the performance. A self-supervised learning-based
method was proposed in [7] that used a semi-parametric
approach to integrate rich visual information. This method
synthesized novel views of ”car” and ”chair” objects from 12
evenly-spaced azimuthal angles. The Neural Radiance Field
(NeRF)-based approach using sparse RGB-D images was
proposed in [8]. The method solved the main limitation of the
large dataset requirement in the conventional view synthesis
systems. The highest mean SSIM score achieved by this
proposed model was 0.6100. However, the main limitation is
that these methods can not generate novel views of in-the-wild
images due to the unavailability of camera intrinsic metadata.

An effective way to resolve this problem is by predicting the
camera focal length from in-the-wild images. A fast camera
focal length extraction method was proposed in [9] that used
parallel particle swarm optimization. This method returned
good performance while reducing the time consumption. A
novel camera focal length determination method was proposed
in [10] using a calibration pattern of the checkerboard. How-
ever, these methods lack semantic feature information which is
needed for estimating the focal length between the camera and
the captured image of a complex scene. To address this issue,
a deep learning-based approach was proposed in [11] that
used the DLA-34 network to perform high-level visual feature
extraction first, followed by a 3D box parameters regression
task to predict the camera focal length. The achieved accuracy
of 56.31% on the benchmark KITTI dataset indicates further
need for improvement in their proposed method.

In our proposed method, we consider integrating the cam-
era focal length estimation module into the encoder-decoder
network, depth estimation module, and view transformation
module to enhance the performance of novel view synthesis.
The main contributions of our proposed method are as follows:

1) We propose a camera focal length prediction module
using an encoder network and a linear activation function
that extracts the semantic high-level features at multi-
scale.

2) We utilize the combined feature extraction strategy from
the input RGB image and corresponding depth map to
improve the view transformation module.

3) We modify the decoder network with convolutional
operations to synthesize the novel views.



This article is presented as follows: Section II reviews the
existing state-of-the-art research, Section III describes the
proposed methodology in detail, Section IV explains imple-
mentation and experimental evaluation, and lastly Section V
concludes the achievements and future scope of this research
study.

II. RELATED WORK

We introduce an encoder-decoder novel view synthesis
model architecture with an integrated camera focal length
prediction model. Therefore, we summarize a brief of existing
methodologies into two sections, camera focal length estima-
tion model and novel view synthesis model.

A. Camera Focal Length Estimation Model

A robust camera pose and camera focal length estimation
method were proposed in [12] to solve the perspective-n-point
(PnP) problem for uncalibrated cameras, also referred to as
unknown camera intrinsic parameters. This method utilized
exhaustive linearization to solve the UPnP (Uncalibrated PnP)
equation and achieved good accuracy. However, the time
consumption was comparatively high. To address this issue,
Zhou et al. [13] proposed an efficient PnP solution for cameras
with unknown camera focal lengths using a polynomial system.
Later, Yin et al. [14] proposed a robust PnP solution for
cameras with unknown focal lengths using Gröbner basis
minimal solver combined with convex optimization. Although,
this proposed method achieved higher accuracy with lower
time consumption, in some cases the matching algorithm failed
to provide sufficient key points to localize the PnP problem. He
et al. [15] proposed a deep learning-based approach for depth
estimation using embedded camera focal lengths from single-
viewed images. Their method could efficiently reconstruct
depth feature maps, however, their system could not achieve
the fastest of all state-of-the-art methods in terms of lowest run
time. Ponimarkin et al. [16] proposed a focal length estimation
method using a render and compare strategy from in-the-wild
RGB images. This method significantly reduced the loss error
than the existing methods. However, this method suffered from
false retrieval of some 3D models.

B. Deep View Synthesis Model

The novel view of an object can be efficiently reconstructed
by generative neural networks using depth feature extraction.
Liu et al. [17] proposed a deep generative model, called SCGN
based on encoder-decoder network architecture. The advantage
of this network it can encode appropriate high-level features
without the requirement of geometrical property rectifications,
resulting in reduced geometrical distortion issues. However,
this method did not investigate single-viewed source images.
Lei et al. [18] proposed a powerful deep view synthesis
network, called DGCC-Net by combining gradual and cycle
synthesis. Whereas the gradual conversion technique learns the
progressive rotation trend using intermediate transformation
between the source and target images to synthesize a clearer
target view, the cycle network maps the synthesized target view

back to the source view to promote better feature learning of
the target view. The proposed methodology performed well in
terms of reducing the computation complexity. However, the
performance can be improved by incorporating various features
along with the RGB source image. Addressing this issue,
Jiang et al. [19] proposed an encoder-decoder architecture-
based network that uses the source image and its corresponding
warp image as the input. Additionally, this method introduced
to channel attention block technique to reduce the errors from
depth estimation and target view generation process. However,
due to the unsupervised training for depth estimation, some
missing pixels were observed in the generated target view.

In this article, we aim to improve the novel view syn-
thesis model by embedding predicted camera focal length
information and semantic high-level visual features at multi-
scale to generate a depth feature map. Additionally, we apply
a combined feature extraction strategy from estimated depth
features and the corresponding RGB input image to generate
novel views.

III. METHODOLOGY

This section presents the proposed camera focal length
prediction method to generate a novel view of a single-viewed
object, as shown in Fig. 1. We describe the method in four
steps. First, we use an encoder network to extract semantic
high-level features from the RGB input image, as shown in
Fig. 2. These features are then utilized to predict the focal
length between the object and the camera. In the second step,
we concatenate the extracted semantic high-level features with
the predicted focal length features and feed them to a decoder
network. The decoder network then estimates the depth feature
map from the input image. In the third step, we use another
encoder network to extract combined features from the input
image and its corresponding depth feature map. Finally, we use
a perspective transformation module on the combined features
to transform into a new viewpoint. Then another decoder
network is applied to synthesize a novel view image from the
transformed features, upsampling it to the original input image
resolution. The following subsections A, B, C, and D provide
detailed material about the proposed methodology.

A. Camera Focal Length Prediction with Encoder

The main objective of this step is to predict the camera’s
focal length from an in-the-wild image, where the camera’s
intrinsic properties, including the focal length, are unknown.
This step is crucial because it enhances our understanding of
the geometrical properties, spatial location, and depth informa-
tion of objects in the image. As shown in Fig. 3, the distance
between the camera lens and the sensor is referred to as the
focal length (F ), while the angle of view (θ) represents the
scene that the camera sensor can capture. The angle of view
(θ) can be determined using the focal length and sensor width
(W ), as in (1).

θ = 2× tan−1 W

2× F
. (1)
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Fig. 1. Shows framework of the proposed methodology.
.

Fig. 2. Shows the proposed encoder network architecture based on DeepLabv3+ network, where Resnet-18 CNN is used as the backbone network.
.

Fig. 3. Shows two of the camera intrinsic parameters, focal length and angle
of view, which are used for novel view synthesis..

The camera focal length prediction approach directly facili-
tates depth estimation and 2D to 3D rendering of objects. We
use an encoder network to extract the contextual features at
a multi-scale. The encoder network is built upon a modified

DeepLabv3+ network that encodes both low-level and high-
level features from the source input image. We utilize the
ResNet-18 convolutional neural network as the backbone of
the encoder, as in [20]. As shown in Fig. 2, we extract the low-
level feature from the Conv2 layer (64-channel feature map)
and continue the backbone network flow until Conv5 layer.
Then we feed the last feature map (512-channel feature map)
to an Atrous Spatial Pyramid Pooling (ASPP) module. The
ASPP module consists of one layer of point-wise convolution
with the filter size 1×1 and 5 layers of depthwise convolution
with the filter size 3×3. We employ different dilation rates of
2, 6, 12, 18, and 24 in the filters of depthwise convolutional
layers which enables semantic high-level feature extraction at
the multi-scale. The semantic high-level feature (Si,j) with K
numbers of Conv filters and n− th dilated Conv layer at pixel
position (i,j) can be defined as in (2).
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Si,j =

N∑
n=1

Ii,j,nK × hi,j,nk. (2)

At the last layer, we use a fully connected (dense) layer,
followed by a linear activation function to predict the focal
length of the source image. In the next step, we combine this
predicted focal length information with the semantic features
for the depth estimation.

B. Depth Estimation with Decoder

The proposed decoder network generates the depth feature
map using the extracted features from the encoder network.
The depth map indicates the relative distances of objects in
the image from the camera. After the prediction of the camera
focal length, we concatenate the captured semantic high-level
features with the corresponding focal length and feed this to
the decoder network. The decoder refines the features, taking
into account the focal length, to produce a depth map. We
add 3 × 3 Conv. layer to refine the features. Finally, we add
bilinear upsampling by factor 4 to the refined features, to make
it compatible with the original image resolution. After that, we
add a sigmoid activation function to estimate the depth feature
map output of the corresponding input image.

C. Combined Feature Extraction

We combine the RGB input image and its corresponding
depth feature map at this step. Similar to the previous encoder
network architecture, we use another encoder network to
extract combined features. This approach helps the network
to learn semantic dense depth information of the input image.
The combined feature extraction can be represented as in (3).

βcombined = Encodercombined(IRGB + Sdepth). (3)

Where, IRGB and Sdepth refer to RGB input image and
estimated depth feature map generated using semantic high-
level feature at multi-scale, respectively.

D. View Transformation Module

At this step, we transform the extracted combined features
into a new viewpoint of the object based on the perspective
transformation approach. The projection of the 3D point to the
image plane (2D coordinates) can be defined as in (4).

pimage = Tl → K · [R|t] · Pworld. (4)

where pimage and Pworld are the homogeneous coordinates
in the image plane and real-world coordinates, respectively.
[R|t] is combined rotation matrix R and a translation vector t.
Tl represents the transformed features that belongs to pimage.
The perspective projection matrix K includes the intrinsic
parameters of the camera focal length F .

Fig. 4. Shows the RGB input image and novel views from Pix3D [22] dataset
for object category ”chair”..

E. Generating Novel View

We use another decoder network that refines the transformed
viewpoint features at this step. In this decoder network, we
add two layers of Conv filters of size 3 × 3, followed by
bilinear upsampling by factor 4 to generate the novel view
of the same resolution as the input image. The synthesized
image with a novel viewpoint using the transformed features
can be represented as in (5).

ηnovel = Decoder(Tl). (5)

We discussed the implementation of the proposed method-
ology and evaluated results in the section IV.

IV. EXPERIMENTAL RESULTS

Our proposed method is implemented in Python software
on a personal computer with PyTorch library, NVIDIA Titan
1650i GPU of 8 GB memory, an Intel(R) Core(TM) i7-
10750H CPU running at 2.60 GHz, a 64-bit operating sys-
tem, and a 500 GB of solid-state drive (SSD). We use the
Adam optimizer with momentum 0.9, LearningRate 0.001, and
L2Regularization 0.005. We train and evaluate our proposed
method on the benchmark ShapeNet [21] and Pix3D [22]
datasets on the object category ”chair”. We divide the datasets
for training, validation, and testing sets in a 70:20:10 ratio.

We use three loss functions to prevent overfitting: MSE for
focal length loss, L1 loss for depth estimation, and SSIM loss
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for novel view synthesis. Some examples of the RGB input
image and generated novel views are represented in Fig. 4. The
results show that our embedded camera focal length prediction
model, and the combined feature extraction of RGB input and
depth feature map technique performed well for novel view
synthesis. However, our system encountered comparatively
higher run time than the existing methods. This problem can
be reduced by utilizing faster convolutional operations in the
proposed network.

V. CONCLUSIONS

We propose a deep neural network model based on an
encoder-decoder architecture, which includes an embedded
camera focal length prediction component. This model can
efficiently reconstruct new viewpoints from a single input
image with unknown focal lengths. Our experimental results
demonstrate good performance in depth feature map estimation
by utilizing high-level semantic features at multiple scales. In
the future, we plan to evaluate the proposed methodology on
different object categories from benchmark datasets.
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