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Abstract— Drowsiness poses a significant challenge to cognitive 

and motor functions, compromising safety in critical tasks such as 

driving and increasing the risk of traffic accidents. Existing driver 

drowsiness detection systems inadequately address the gradual 

progression of drowsiness, focusing solely on binary classifications 

of drowsiness. This study aims to develop a neural network model 

that utilizes physiological signals, including 

Electroencephalogram (EEG) and Electrocardiogram (ECG), to 

detect multiple levels of a driver’s current drowsiness (Alert, 

Moderately Drowsy, and Extremely Drowsy). EEG and ECG data 

were collected from ten participants during 1-hour simulated 

driving experiments, supplemented by video recordings for once-

per-minute drowsiness assessments through Observer Rating of 

Drowsiness (ORD) by two observers, which served as the ground 

truth. The neural network trained on 2-channel prefrontal EEG 

frequency-domain features, heart-rate variability (HRV) features, 

and driving time achieved accuracies of 92%, 77%, and 77% for 

Alert, Moderately Drowsy, and Extremely Drowsy, respectively. 

This high performance, with reliance on minimal electrodes and 

simple architecture, supports its feasibility for real-time 

applications as an early warning system for critical drowsiness in 

order to promote driver safety. 

I. INTRODUCTION 

Drowsiness is a transitional state to falling asleep, 

characterized by fluctuating levels of alertness and the onset of 

sleep, manifested as difficulty in maintaining wakefulness and 

attentiveness during activities. It is a major concern in many 

daily-life scenarios, especially in attention-demanding tasks 

such as driving. Monotonous driving lowers physiological 

arousal, sensorimotor functions, and information processing, 

thereby reducing the driver's capacity to react to sudden and 

critical situations on the road and making drivers prone to 

drowsiness [1, 2]. Cognitive and behavioral changes resulting 

from drowsiness can reduce task efficiency and compromise 

safety, potentially leading to life-threatening consequences [3].  

In recent years, intensive research has been conducted into 

techniques for detecting driver drowsiness to create a more 

objective evaluation. The current limitation of most driver 

drowsiness detection systems lies in emphasizing the binary 

classification of human mental states as alert or drowsy and 

issuing alerts to drivers only upon reaching severe levels of 

drowsiness [4, 5]. Since drowsiness is a dynamic process, 

defining a threshold that separates mental states into only two 

extreme categories is too simplistic and impractical. Increasing 

the number of detection levels allows for a more 

comprehensive capture of the gradual progression of 

drowsiness, which is essential for timely and effective 

intervention. However, overly fine-grained classification may 

make it difficult for users to interpret the result and make 

prompt decisions. Therefore, this study focuses on a three-level 

classification of driver drowsiness to identify the intermediate 

state between extremely alert and drowsy, enabling drivers to 

be aware of their mental state and decide when to rest before 

reaching severe drowsiness. 

Driver drowsiness detection systems can be classified into 

four main types: biological-based, image-based, vehicle-based, 

and hybrid-based methods [4-7]. Physiological measures 

achieve the highest accuracy among these categories, directly 

representing our functional state.  EEG and ECG are two 

commonly used physiological signals in drowsiness detection, 

offering insights into the underlying neurological and 

cardiovascular systems. EEG, a brain electrical signal, is 

considered the gold standard to indicate drowsiness as it 

represents the central nervous system activity [8]. The 

frequency shift of EEG signals is found to correlate with 

drowsiness. The study by Zhao et al. shows the rise in low-

frequency power caused by drowsiness after driving for 90 

minutes [9]. Various feature extraction methods are developed 

to obtain significant parameters underlying the complex and 

non-stationary dynamics of the brain [10]. The change in 

alertness affects the central and autonomous nervous systems, 

which is linked to HRV that can be extracted from ECG [11]. 

During drowsiness, our body becomes restful, where 

parasympathetic activity increases and sympathetic activity 
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decreases. This relaxing response lowers the heart rate and 

increases the intervals between heartbeats, allowing high-

frequency HRV to occur [12]. The previous study suggests that 

combining EEG and ECG features enhances binary drowsiness 

detection model performance [13], making them the primary 

parameters for model development in this study. 

Practicality is also important, apart from detection accuracy. 

This study aims to minimize the system’s complexity to ensure 

feasibility for further real-world applications. We focus on 

reducing the electrode requirements to enhance the potential for 

developing wearable devices or gadgets and simplifying the 

detection model for real-time processing. 

Thus, the main objective of this study is to develop the 

physiological-based multi-level driver drowsiness 

classification model using minimal EEG channels and 

individual ECG leads. Since NHTSA reports young adults aged 

16-24 as a high-risk group for falling asleep while driving [14], 

young adult participants were chosen as representative EEG 

and ECG data acquisition groups in a controlled and safe 

simulated monotonous driving environment. 

 

II. MATERIALS AND METHODS 

The development of a physiological-based machine learning 

model for multi-level driver drowsiness classification involves 

three phases: Data Acquisition, including driving simulator 

setup and data collection; Data Preparation, including data 

preprocessing, feature extraction and selection, and ground 

truth labeling; and Model Development, as shown in Fig. 1.  

Fig. 1 Overview of Multi-Level Driver Drowsiness Classification Model 

Development 

A. Driving Simulator Setup 

Data Acquisition was performed using a 1-hour driving 

simulation in the Brain Computer Interface (BCI) Laboratory 

at Mahidol University with the 'City Car Driving' simulator and 

Logitech G27 USB Racing Wheel to mimic a monotonous 

driving environment. Physiological signals including EEG (12 

channels - O1, O2, Fp1, Fp2, F3, F4, P3, P4, P7, P8, T7, T8) 

and ECG (lead II) were collected via a 16-channel g.USBamp 

RESEARCH device at a sampling rate of 512 Hz. Participant 

behaviors were monitored through video recordings using two 

cameras to capture overall body movements and facial 

expressions for drowsiness level labeling. Ethics approval for 

this experiment was granted by Mahidol University (MU-CIRB 

2023/283.1209). 

 

B. Data Collection 

Data for model development was obtained from 10 healthy 

young adults aged 20-24 with valid driver’s licenses and no 

known neurologic or cardiac conditions that could interfere 

with EEG and ECG signal interpretation. Individuals who took 

medications that may affect neurological or cardiac function, 

had a recent history of substance abuse in the past six months, 

consumed alcohol or caffeine within 8 hours before the study, 

or experienced recent traumatic events that might affect sleep 

patterns or mental state were excluded.  

All participants were instructed to maintain a constant speed 

in a specified lane during a one-hour drive. To maintain a 

controlled environment and ensure the authenticity of 

participants’ drowsiness progression, no more than three 

observers were present during the experiment, and their 

interaction with the subjects was minimized.  

C. Data Preprocessing 

Data preprocessing was executed using MATLAB’s Signal 

Processing and EEGLAB Toolboxes. EEG preprocessing 

involves Butterworth band-pass filtering with a low-pass filter 

at 40 Hz (order 9) and a high-pass filter at 0.5 Hz (order 6), 

followed by Artifact Subspace Reconstruction (ASR) to 

remove artifacts. ECG preprocessing includes Butterworth 

band-pass filtering at 1-40 Hz (order 3) and QRS detection via 

the Pan & Tompkins Algorithm. Both EEG and ECG were then 

split into 1-minute segments with 50% overlap for further 

analysis. After preprocessing and excluding artifactual 

segments, a total of 1,132 segments each were generated from 

both EEG and ECG data. 

 

 

Fig. 3 Data Preprocessing Pipeline 

Fig. 2 Driving Simulator Setup at BCI Laboratory at Mahidol University 
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D. Feature Extraction and Selection 

This study focuses on the frequency domain features of both 

EEG and ECG signals. Features were extracted from each EEG 

and ECG data segment using MATLAB’s Signal Processing 

and EEGLAB Toolboxes. The feature set includes: 

EEG Features (from each channel): Relative Delta Power 

(0.5-4.0 Hz), Relative Theta Power (4.0-8.0 Hz), Relative 

Alpha Power (8.0-12.0 Hz), Relative Beta Power (12.0-30.0 

Hz), Alpha/Beta Ratio, and (Theta+Alpha)/Beta Ratio 

ECG Features: HRV features including Relative Low-

Frequency (LF) Power (0.04-0.15 Hz), Relative High-

Frequency (HF) Power (0.15-0.40 Hz), and LF/HF Ratio 

Channels O1, O2, Fp1, and Fp2 were chosen as the primary 

EEG channels in this study due to their strong correlation with 

drowsiness, as indicated by previous research [13, 15] and their 

suitability for wearable device designs such as headbands. The 

feature sets from each channel were initially trained separately 

to determine the performance of single EEG channel usage. 

Subsequently, the combination of high-performing channels 

was examined to assess their integrated effects. 

E. Ground Truth Labeling 

ORD was applied for ground truth labeling, which involves 

assessing drowsiness levels by observing participants' 

behaviors and facial expressions from video recordings [16]. 

The 60-minute video data from the driving phase were divided 

into 60 segments, each one minute. For each video segment, 

two independent raters assigned a drowsiness level, categorized 

into five stages: Not Drowsy (scored as 1), Slightly Drowsy (2), 

Moderately Drowsy (3), Very Drowsy (4), and Extremely 

Drowsy (5). Then, the assessment scores from two raters were 

averaged, in order to minimize subjective bias. These labels for 

each minute of the sessions were aligned to the EEG and ECG 

segments at the same timestamps. In contrast, the segment that 

overlaps the labels was calculated by the mean of two 

consecutive labels that the segment overlaps. The average 

scores were used to categorize drowsiness into three simplified 

levels: Alert (average score ≤ 2), Moderately Drowsy (2 < 

average score ≤ 3), and Extremely Drowsy (average score > 3). 

A score below two was classified as Alert, as the label ‘Slightly 

Drowsy’ is considered sufficiently alert for driving [17]. The 

cut-point of 3 for Extremely Drowsy was chosen because any 

segment with an average score above three must be labeled as 

‘Very Drowsy’ or ‘Extremely Drowsy’ by at least one rater, 

which is critically harmful to driving. While not ideal for safe 

driving, the Moderately Drowsy stage is an early warning phase 

before progressing to the critical Extremely Drowsy stage. 

F. Model Development 

Multilayer Perceptron (MLP) was used to predict simplified 

drowsiness levels as Alert, Moderately Drowsy, and Extremely 

Drowsy from EEG and HRV features. Due to the progressive 

nature of drowsiness in a monotonous environment, driving 

time was included as one of the input features to enhance model 

accuracy. The dataset was split into an 80% Training set and a 

20% Testing set, maintaining class proportions. The model 

architecture was simplified to ensure practicality for further 

real-time applications, consisting of an input layer, a batch 

normalization layer, two hidden layers with Rectified Linear 

Unit (ReLU) activation functions, each followed by a dropout 

layer and batch normalization layer, and a softmax layer for 

three-class prediction, as shown in Fig. 4. Hyperparameters 

were tuned using Random Search, varying the optimizer, 

learning rate, dropout rates, batch size, epochs, and units per 

layer as detailed in Table 1. 5-fold cross-validation was 

performed to minimize overfitting due to the limited sample 

size. Class weights were applied to handle class imbalance as 

some subjects might rarely experience extreme drowsiness 

under the simulated environment.  

Table 1 Hyperparameter Search Space for Random Search 

Hyperparameter Search Space 

Number of Units (2 hidden layers) 8, 16, 32 

Dropout rates (2 dropout layers) 0.1 to 0.5 

Optimizer ‘adam’, ‘sgd’, ‘rmsprop’ 

Learning rate 0.001 to 0.1 

Batch size 10, 20, 50 

Epochs 50, 100, 150, 200 

 

Several models were trained to compare performance across 

input feature sets to predict three drowsiness levels. EEG 

features were used in every model, with comparisons made 

based on different EEG channels (6 features from each channel) 

and the inclusion of HRV features (3 features). Additionally, 

the models with and without driving time as a feature were 

compared to investigate its impact on model performance. 

StandardScaler was used to rescale all features except driving 

time to preserve the consistent temporal properties, while 

vector concatenation was employed to integrate the input 

features.  

 

III. RESULTS 

A. Comparison of Feature Sets 

Table 2 shows the class-wise accuracy and F1 scores for 

models trained on different feature sets. The results 

demonstrate that including driving time and HRV features 

improves the models’ performance across all EEG channels 

(O1, O2, Fp1, Fp2).  

Fig. 4 Neural Network Architecture for Multi-level Drowsiness Classification 
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Table 2 Class-wise Accuracy and F1-scores for Models Trained on 

Different Feature Sets 

EEG 

Channel 

HRV 

features 

Driving 

time 

Class-wise Accuracy (%) F1-

score 1 2 3 

O1 No No 48.96 48.68 70.59 0.537 

  Yes 92.71 53.95 20.59 0.635 

 Yes No 48.96 59.21 73.53 0.579 

  Yes 78.13 61.84 73.53 0.720 

O2 No No 33.05 51.32 50.00 0.445 

  Yes 79.66 59.21 47.06 0.687 

 Yes No 46.61 52.63 73.53 0.545 

  Yes 73.73 78.95 50.00 0.725 

Fp1 No No 55.08 53.95 64.71 0.578 

  Yes 83.05 65.79 79.41 0.772 

 Yes No 61.86 51.32 73.53 0.609 

  Yes 83.05 75.00 85.29 0.813 

Fp2 No No 64.60 52.86 81.82 0.650 

  Yes 84.07 57.14 86.36 0.759 

 Yes No 69.03 57.14 72.73 0.670 

  Yes 84.07 52.86 72.73 0.728 

Class 1: Alert, Class 2: Moderately Drowsy, Class 3: Extremely Drowsy 

 

For all EEG channels, including driving time increases the 

class-wise accuracy across all classes, while adding HRV 

features results in less bias, more balanced class accuracies, and 

higher F1 scores. Among all EEG channels used, the Fp1 

channel shows the most promising performance, with the 

model that includes HRV features and driving time achieving 

the highest overall F1-score of 0.813 and being the only one to 

reach an accuracy of at least 75% for all classes. When 

considering pairs of EEG channels, Fp1 and Fp2 generally 

provide higher accuracy than O1 and O2, representing a higher 

significant correlation with drowsiness classification. Thus, the 

combination of the former pair of EEG with both HRV features 

and driving time included is investigated. 

B. Combination of Fp1 and Fp2 EEG channels 

The final MLP is trained using an optimal combination of 

features, including EEG features from Fp1 and Fp2 channels, 

HRV features, and driving time. The optimized 

hyperparameters from the Random Search are 16 and 8 units in 

the first and second hidden layers, dropout rates of 0.12 and 

0.46, the 'sgd' optimizer with a learning rate of 0.044, a batch 

size of 50, and 100 epochs. The predicted results, visualized in 

Fig. 5, indicate high true positive rates for Alert (92%), 

Moderately Drowsy (77%), and Extremely Drowsy (77%). The 

confusion matrix represents the model’s high effectiveness in 

identifying the Alert state. For the Moderately Drowsy class, 

most errors are misclassified as a higher level of drowsiness, 

with a small proportion falsely classified as Alert. This is 

acceptable for a system designed to proactively and early detect 

higher levels of drowsiness rather than miss detections. 

Regarding the Extremely Drowsy class, 23% of samples are 

misclassified as Moderately Drowsy, indicating some 

confusion between these two classes. However, none of the 

actual Extremely Drowsy data points are detected as Alert, 

demonstrating the model’s ability to distinguish between 

extreme classes and ensure safety in drowsiness detection 

during the extremely drowsy state.   

 

Fig. 5 Confusion Matrix for the Final Model Using Fp1 and Fp2 EEG 

Channels, HRV Features, and Driving Time 

 

IV. DISCUSSION 

A. EEG channels 

The Fp1 and Fp2 channels perform better in classifying 

drowsiness levels than O1 and O2 channels. This can be 

attributed to their placement over the prefrontal cortex, a brain 

region associated with executive functions and alertness. As 

drowsiness progresses, the frequency of EEG waves in this area 

tends to shift from higher frequencies, like beta waves, to lower 

frequencies, including alpha and delta waves, due to increased 

neuron synchronization [18]. Additionally, changes in blink 

rates, which affect EEG signals in Fp1 and Fp2, may also occur. 

These factors make frequency domain features from these 

complementary channels in the prefrontal cortex significant for 

neural networks to capture useful information from EEG and 

effectively classify drowsiness levels. 

In contrast, the O1 and O2 channels are located over the 

occipital lobe and primarily process visual information. During 

relaxed states with eyes closed, sensory input reduction can 

lead to synchronous EEG and shifts to low-frequency ranges 

[19]. However, subjects must remain visually attentive during 

driving tasks despite cognitive declines. Therefore, Fp1 and 

Fp2 are more likely to reflect drowsiness-related changes 

during driving. Combining features from both channels can be 

more effective, especially when there is a loss of EEG signal or 

other issues. 

B. Combination of EEG and HRV Features 

ECG signals provide valuable information about heart-rate 

variability, which reflects autonomic nervous system activity 
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that changes as drowsiness progresses. Biological signals vary 

more distinctly between extreme states, such as being 

extremely alert and drowsy. The transition period, however, is 

challenging for the model to identify due to the gradual nature 

of drowsiness. 

The study shows that integrating HRV features effectively 

enhances the model's ability to identify this intermediate state. 

This improvement is likely due to the more holistic view of 

physiological changes provided by ECG, enabling the model to 

detect subtle changes during the transition period between 

extreme states. Moreover, HRV features help mitigate some 

limitations of EEG signals, which are more susceptible to 

artifacts and noise that might obscure the neural patterns 

associated with drowsiness. Therefore, combining EEG and 

HRV features as a multimodal approach significantly enhances 

the drowsiness classification process by the neural network 

compared to using EEG features alone. 

C. Driving Time 

Adding driving time as a feature substantially impacts the 

model's performance. Drowsiness is a progressive condition, 

and including driving time helps the model understand the 

temporal context of the physiological signals. This temporal 

information allows the model to accurately capture the gradual 

transition between alertness and drowsiness and discern 

patterns and trends in the physiological data corresponding to 

different drowsiness stages. This is particularly important for 

detecting the Moderately Drowsy state, where transitions are 

more subtle and gradual. This finding also aligns with the 

previous study, which supports the positive impact of driving 

time on model performance [20].  

Compared to HRV features, driving time has a greater 

influence on model accuracy, likely due to the similar pattern 

of drowsiness progression over time across individuals, while 

physiological responses can vary. Nevertheless, HRV remains 

a crucial complementary modality to EEG, as discussed earlier 

(see Discussion, B. Combination of EEG and HRV Features). 

The relative importance of HRV compared to driving time 

could be further investigated with greater consideration of 

circadian rhythms and other time-related factors that affect 

individual susceptibility to drowsiness [2]. 

D. Model Practicality 

The practicality of the final model, trained using features 

from Fp1 and Fp2 EEG channels, frequency-domain HRV 

features, and driving time, is considered based on model 

performance and the feasibility of wearable technology.  

In terms of model performance, the model effectively 

distinguishes between different levels of drowsiness, including 

the Moderately Drowsy state, with no instances of Extremely 

Drowsy being misclassified as Alert. This capability enables 

early warnings that allow users to be notified and aware of their 

declining mental readiness for driving before reaching a critical 

stage of drowsiness. 

For application in wearable technology, the model's reliance 

on minimal electrodes, including two EEG channels in the 

prefrontal area, with HRV features, makes it feasible to design 

devices that capture those signals during driving. EEG 

monitoring devices can take the form of headbands for less 

intrusiveness and a more comfortable setup for continuous 

monitoring, while heart rate can be monitored via wristbands 

or smartwatches. Using minimal features and simple model 

architecture reduces the complexity, making real-time 

processing more feasible. 

 

V. CONCLUSIONS 

The study suggests that combining EEG and HRV features 

enhances the performance of 3-level drowsiness classification, 

particularly in identifying the intermediate state between 

alertness and critical drowsiness. Moreover, implementing 

driving time preserves the temporal pattern of drowsiness 

progression, leading to better overall accuracy. The final model 

based on 2-channel prefrontal EEG features, HRV features, and 

driving time yields high accuracy across all classes. Although 

there are some misclassifications, most errors in Moderate 

Drowsy detection are falsely predicted as Extremely Drowsy, 

which is acceptable for early warnings of critical drowsiness. 

The model’s use of minimal electrodes and simple 

architecture supports its practicality for real-time applications, 

contributing to driver safety. Future developments could 

include expanding the variety of driving conditions and the 

participants’ age range to improve model generalization, 

developing wireless, real-time systems, and incorporating 

personalized participant data for improved accuracy. 

Additionally, pre-driving data could be applied to identify 

physiological markers correlating with drowsiness onset and 

progression, offering potential safety measures before driving. 
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