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Abstract—Low-light image enhancement is a classic problem
in low-level vision tasks, aiming to improve the quality of images
captured in poor-lighting scenarios. Conventional deep enhance-
ment models often produce distorted content (e.g., deviated
lighting conditions, color bias) in extremely dark regions because
they fail to capture comprehensive color information during the
reconstruction process. To address these issues, we propose a
novel normalizing flow-based model that incorporates an auto-
color encoding method, called ACE-Flow, for low-light image
enhancement. By leveraging auto-color encoding, our method can
encode color information during feature extraction and effectively
restore the corrupted image content in challenging regions.
Furthermore, our approach can accurately learn the mapping
from low-light images to high-quality ground-truth images, be-
cause the invertibility property of the normalizing flow implicitly
regularizes the learning process. Experiments demonstrate that
our method significantly outperforms other promising low-light
enhancement models in terms of reconstruction and perceptual
metrics. Additionally, the enhanced images produced by our
model exhibit rich details with minimal distortion, resulting in
superior visual quality.

I. INTRODUCTION

Low-light image enhancement is an attractive topic in low-
level vision tasks, with the aim of jointly improving luminance
and removing undesirable noise caused by sensors and dim
environments. Low-light image enhancement techniques have
significant industrial values, including applications in modern
imaging devices, surveillance, and autonomous driving, attract-
ing considerable researcher attention.

In the past years, many deep learning-based low-light image
enhancement models have been proposed and have achieved
promising results. However, the methods in [1]–[4] often
produce unacceptable artifacts when processing real-world
Ultra-High-Definition images [5]. Wu et al. [6] and Xu et al.

[7] proposed methods to simultaneously enhance luminance
and remove noise in the spatial domain, resulting in degraded
performance when the images are captured in challenging
lighting conditions. Despite the promising results shown in
[8], the heavy network structures highly limit its applications in
real-world scenarios. All the mentioned methods largely ignore
the profound color information in the reconstruction process,
which inevitably leads to suboptimal solutions. In addition,
after training, these methods cannot be generalized to other
kinds of low-light images, such as infrared images.

Unlike previous studies, this paper focuses on more chal-
lenging image data, i.e., infrared images. When the infrared
filter is removed in the imaging process, the captured images
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Fig. 1: A Low-Light Image (LLI) compared with its Color
Encoding image (CE).

easily suffer from under-exposure in environments with inade-
quate lighting conditions. As a result, the main image content
is unavoidably corrupted by the noise generated by sensors
and other hardware devices. To handle these challenges, we
propose a novel normalizing flow-based model that incorporate
an auto-color encoding method, namely ACE-Flow. To restore
the image content underlying the dark regions, our proposed
method can effectively encode the color information of objects
and image content by leveraging the proposed auto-color
encoding method, providing beneficial prior information for
restoration. As low-light image enhancement is intrinsically
ill-posed, our method adopts the normalizing flow model
to learn the mapping from low-light images to ground-truth
images, because the invertible property of the normalizing
flow implicitly regularizes the forward imaging process from
ground-truth images to low-light images. Furthermore, due to
the invertibility of normalizing flows, which allows for exact
inference and reconstruction of input data, we have empirically
observed that normalizing flows outperform diffusion models.
Consequently, our method leverages normalizing flows to
produce higher-quality images from low-light counterparts.

The main contributions of this paper are summarized as
follows:

1) To address the challenging issues of Low-Light Infrared
images (LLIR), we propose a novel normalizing flow-
based model for low-light image enhancement.

2) Due to the ill-posed nature of low-light images, our
proposed method leverages auto-color encoding (ACE)
to capture the color information of low-light images,
benefiting the restoration of image contents in challeng-
ing regions.



Fig. 2: Overview of our proposed framework (ACE-Flow). The inputs to the framework include the degraded input image (3
channels) I , the color encoding image (3 channels) IACE , and the inverted grayscale version of the low-light image Ig . →
denotes concatenation. The RRDB modules inside the Conditional Encoder represent the Residual-in-Residual Dense Blocks
(RRDB) [9].

3) We leverage the invertible property of the normalizing
flow to effectively learn the mapping from low-light
images to the corresponding ground-truth images, im-
plicitly regularizing the forward imaging process.

4) Experiments show that our proposed method can achieve
better performance than other promising deep low-light
enhancement models for LLIR images, both in terms of
reconstruction and perceptual metrics. Additionally, our
method can effectively produce images with rich details
and minimal distortion, resulting in superior visual qual-
ity.

II. RELATED WORK

A. Low-light image enhancement

Low-Light Image Enhancement (LLIE) is a well-researched
area in computer vision, with numerous methods proposed
over the years to address the challenges of improving image
quality under poor lighting conditions. Here, we categorize the
related work into traditional methods, learning-based methods,
and recent advancements in the field. LLIE is an active and
attractive research area, with various models based on different
architectures proposed to tackle this challenging topic [10]–
[13]. Retinex-based models mainly focus on decomposing
the image into illumination and reflectance components to
suppress noise, improve dim lighting conditions, and remove
artifacts. Deep learning-based models utilize the computational
power of GPUs to train relatively big models with greater
numbers of parameters, enabling them to tackle much more
complex situations using larger datasets and achieve more
robust image restoration [14].

B. Normalizing flow

Normalizing flow is a powerful technique in deep learning
for modeling complex data distributions. It transforms a simple
probability distribution into a more complex one through a
series of invertible transformations, making it highly suitable
for tasks requiring detailed probabilistic modeling. Methods
like Glow [15] and RealNVP [16] have demonstrated the
efficacy of normalizing flow in generating high-quality images
by learning the underlying data distribution. These models
are particularly useful for tasks such as image synthesis
and density estimation. Recently, normalizing flow has been
applied to LLIE, as seen in LLFlow [17], which models the
distribution of low-light images to effectively handle noise and
artifacts. By leveraging the invertibility of flow-based models,
LLFlow achieves superior performance in enhancing low-light
images without introducing significant artifacts.

III. METHODOLOGY

A. The Overall Pipeline of Proposed Method

In this paper, we propose a novel low-light image enhance-
ment technique based on a novel colour encoding method and
using the normalizing flow model as the processing backbone.
Fig. 2 shows the overall pipeline of the proposed method,
consisting of three main parts: the new colour encoding block,
a conditional encoder, and an invertible network. The colour
encoding block draws inspiration from the powerful positional
encoding technique in the Transformer models. Instead of
coding positional information, we use a series of sine and
cosine waves to encode the colour pixels directly. The rationale
behind this design is to leverage this encoding scheme to
extract powerful and discriminative representations that are
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Fig. 3: Perceptual quality comparison with SOTA methods in the field of low-light enhancement in the IR dataset. Our model
performs better in noise reduction and restores more details with smooth surfaces. The small pink region within each image was
magnified and repositioned to the lower-left corner for detailed comparison.

not easily discernible in low-light images to the human eye.
We will demonstrate the effectiveness of this method later. In
addition to this new colour encoding scheme, we also extract
the gray map of the input low-light images, which, together
with the sinusoidal wave-encoded colour map, serves as prior
information in the restoration process. The conditional encoder
is responsible for extracting features from the input and
generating the input for the invertible network. The invertible
network, which consists of flow blocks, aims to generate high-
quality images based on the features of the input.

B. Preliminary

A normalizing flow model transforms a simple probability
distribution into a more complex one through a series of
invertible and differentiable transformations. Previous deep
learning-based models primarily relied on pixel reconstruction
loss. However, due to the challenge of separating undesirable
artifacts from the true distribution of the reference images,
these models often produce restored images with poor percep-
tual quality, resulting in noise and blurriness [8], [18].

Motivated by the good reconstruction performance of flow-
based models [19]–[21], we realized that utilizing conditional
probability distributions can address the aforementioned prob-
lem by encompassing various distributions of natural images.
In particular, the state-of-the-art (SOTA) method LLFlow [17]
demonstrated outstanding performance by using normalizing
flow conditioned on low-light images to model the constrained
distribution of the reference images. In our method, we adopt
the core concept of conditional flow, along with the likelihood
evaluation method proposed in LLFlow, as the backbone model
of our framework. The conditional probability density function
(PDF) for well-exposed images is formulated as follows:

fcnf (xhq|x) = fz(!(xhq;x))

∣∣∣∣det
ω!

ωxhq
(xhq;x)

∣∣∣∣ (1)

where fcnf (·) represents the conditional PDF, and !(·) is
the bidirectional network composed of N invertible layers
ε1, ε2, . . . , εN . The latent variable z = !(xhq;x) is derived
by transforming the corrupted inputs x into normally exposed
images xhq . By employing maximum likelihood estimation,
the model can be optimized using the negative log-likelihood
loss function. The loss function is formulated as follows:

Lnll(x, xhq) = ↑ log fcnf (xhq|x)

= ↑ log fz(!(xhq;x))↑
N→1∑

n=0

log

∣∣∣∣det
ωεn
ωzn

(zn; gn(x))

∣∣∣∣ (2)

where g(·) denotes the encoder that generates the conditional
embedding of the layers εi from the bidirectional network.

C. Sinusoidal modulation color encoding

Inspired by the positional encoding scheme of the Trans-
former model [22], we generate three channels of colour
modulated sinusoidal waves and create a color-encoded low-
light input. Using a method similar to that used for sequential
data in Transformer models, the color encoding for images
is computed to derive a more powerful and discriminative
representation. For a given input image, the color encoding
is calculated as follows:

ACM(I(x,y,c), 2i) = sin

(
I(x,y,c)

10000
2i
d

)
(3)

ACM(I(x,y,c), 2i+ 1) = cos

(
I(x,y,c)

10000
2i
d

)
(4)

where I(x,y,c)is the pixel value of the input image at spa-
tial location (x, y) and c ↓ {0, 1, 2} represents the red,
green, and blue channels of the input image respectively,
i = 0, 1, ..., d/2 is the modulation dimension index, and d
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represents the modulation dimension, which corresponds to the
total number of channels of the input image provided to the
model. It is evident that Equations (3) and (4) map a d↑D
pixel vector at the position (x, y) to an auto colour encoding
matrix ACM(I(x,y,c)) in a specific channel c ↓ {0, 1, 2}.
To obtain sinusoidal modulated color encoding, we follow
a similar operation as in the positional encoding method of
the Transformer model. Then, we sum over the modulation
dimension indices, as follows:

ACE(x, y, c) =
1

d

i=d∑

i=0

ACM(I(x,y,c), i) (5)

where ACE(x, y, c) is a sinusoidal modulated colour encoding
at the spatial location (x, y) and channel c. Then, we concate-
nate ACE(x, y, c), c ↓ {0, 1, 2}, to form a color encoding
image ACE, as follows:

IACE = [ACEr, ACEg, ACEb]. (6)

where ACEr, ACEg and ACEb denote the color encoding
images of the red, green and blue channels.

D. Graymap

We also generate a graymap as an extra input image.
The graymap Ig is calculated by taking the average of the
red, green, and blue values at each pixel position, and then
subtracting this average from 255, as follows:

Ig(x, y) = 255↑ Imean(x, y), (7)

where Imean represents the average value of the red, green
and blue pixel values of the input image, i.e., the grayscale
image. This operation provides an additional channel that
highlights the inverse of the average intensity of the image. By
emphasizing the areas of the image that have lower intensities,
the graymap can guide the model to better understand the
overall brightness and contrast. This additional channel can be
particularly useful in enhancing the model’s ability to detect
and process features that might be more subtle or less obvious
in the original image.

Finally, as illustrated in Equation (7), we concatenate the
original image I , the sinusoidal modulated colour encoding
image IACE , and the graymap Ig together to form the input
Iinput to the backbone network:

Iinput = [I, IACE , Ig]. (8)

Clearly, Iinput has seven channels, each with the same reso-
lution as the original input image. The first three channels are
the original red, green, and blue channels, and the next three
channels are the sinusoidal modulated colour encoding of the
red, green, and blue pixels (see Equations (3), (4) and (5)),and
the last channel is the graymap.

TABLE I: Quantitative comparison of our
method with various state-of-the-art methods

Methods PSNR(→) SSIM(→) LPIPS(↑)
RetinexNet [2] 11.14 0.628 0.586
LIME [23] 11.31 0.639 0.560
Zero-DCE [24] 11.40 0.592 0.443
DiffIR [18] 20.74 0.684 0.200
Restormer [8] 24.73 0.842 0.125
LLFlow [17] 25.42 0.866 0.118
Ours 25.99 0.875 0.106

IV. EXPERIMENTS

A. Experimental settings

To facilitate various experimental settings, we crop the
original images of 400 ! 600 resolution to 256 ! 256 patches,
optimizing I/O operations for better efficiency and time sav-
ings. Our training setup includes a total of 2,832 image pairs,
while the evaluation set comprises 87 image pairs to assess the
performance of our trained models. We evaluated our proposed
model against several leading methods, including RetinexNet
[2], LIME [23], Zero-DCE [24], DiffIR [18], Restormer [8],
and LLFlow [17].

B. Experimental results

To evaluate the performance of different methods on the
IR dataset, we retrained all the methods using the same
training data, i.e., the training set of the IR dataset. For a
fair comparison, we explored a wide range of hyperparameters
for the compared methods and reported the best performance
obtained. The experimental results are presented in Table I,
and a visual comparison is shown in Fig. 3.

(a) Input (b) Reference

(c) w/o graymap (d) w/ graymap

Fig. 4: Visual comparison of different configurations of
graymap. The green rectangular regions in the images are
enlarged for easy comparison. (a) An input image, (b) the
reference, (c) the restored image without using graymap and
(d) the restored result using the graymap.
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(a) Reference (b) CE of LLI (c) w/o ACE (d) w/ ACE

Fig. 5: Visual comparison of different configurations of ACE. We can see that by adding ACE, the model’s performance in
restoring low-light images is highly improved.

Based on our evaluation and analysis of the experimental
results, we observe that RetinexNet exhibits limited gen-
eralization ability and produces unsatisfactory outputs, e.g.,
RetinexNet [2]. We conjecture that this limitation arises be-
cause the method assumes the existence of an invariant re-
flectance map across low-light inputs and ground-truth images,
requiring a shared network to extract both illumination and
reflectance maps, which is not feasible in our setting.

In contrast, methods based on other principles, such as
Restormer [8] with a Transformer architecture and DiffIR [18]
using a diffusion model, show better performance. However,
our method achieves the best performance among all competi-
tors in terms of both fidelity and perceptual quality.

C. Ablation Study

An ablation study was performed to evaluate the effective-
ness of ACE and the graymap in enhancing model perfor-
mance. The visual results, which highlight the impact of these
components, are shown in Fig. 4 and Fig. 5.

The experimental results demonstrate that incorporating the
graymap into the model significantly enhances its sensitivity
to subtle image details. Specifically, in the green rectangular
region of Fig. 4(c), it is evident that the model without the
graymap struggles to capture edge information effectively.
However, after integrating the graymap, the model is able to
generate much clearer and more defined details that correspond
to the edges present in the reference image, as illustrated in
Fig. 4(b).

To further substantiate these findings, quantitative results are
provided in Table II, where “A” and “G” represent the use of
ACE and the graymap, respectively. The data in Table II clearly

indicates that the combined use of ACE and the graymap
yields substantial improvements in the model’s performance,
particularly in terms of PSNR. Notably, while the integration
of the graymap alone results in a more pronounced increase in
PSNR, it only brings about a slight enhancement in SSIM. On
the other hand, the inclusion of ACE delivers a comparable
improvement in SSIM, though the gain in PSNR is marginally
lower compared to that achieved with the graymap. When
both the graymap and ACE are employed together, the best
performance is achieved.

TABLE II: Quantitative Results of Ablation Study. “A” means
that ACE is used, while “G” means that graymap is used.

G A PSNR (→) SSIM (→)
✁ ✁ 25.42 0.866
↭ ✁ 25.87 0.874
✁ ↭ 25.78 0.874
↭ ↭ 25.90 0.876

V. CONCLUSION

In this paper, we introduce a novel framework, the ACE-
Flow model, designed to address the Low-Light Image En-
hancement (LLIE) task using an infrared (IR) dataset. This
dataset captures more photons by cutting off the infrared
filter block inside the camera. By incorporating the ACE-
Flow structure and a unique graymap, our model can more
effectively interpret the color information and intricacies of
low-light images, resulting in high-quality outputs. Exten-
sive experiments demonstrate that our model excels in both
quantitative evaluations and perceptual quality, showcasing its
superior performance.
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