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Abstract—In this paper, we propose a blind synchronization
method for signals with sampling rate offset (SRO) and missing
data, which occasionally occurs in distributed recording for
acoustic scene classification. In our method, the correspon-
dence between short-time frames is first estimated using cross-
correlation and dynamic programming (DP) matching. Then, two
methods for producing synchronized signals are compared. The
first method is based on the overlap-add along the DP path, while
the second method uses the DP path only to identify missing
data positions and compensates for the SRO with a linear phase
model. The performance of these methods is evaluated through
experiments. The results are promising, and further applications
to acoustic scene classification are expected.

I. INTRODUCTION

Distributed microphone array consists of multiple indepen-
dent recording devices such as smartphones, voice recorders,
and notebook PCs, which do not require wired connections and
allow for flexible placement of devices [1]. Furthermore, the
use of devices with communication capabilities increases the
convenience of the system [2]. In the distributed microphone
array, we can use spatial information obtained from these
devices for blind source separation [3], [4], source localiza-
tion [5], speech activity detection [6], and acoustic scene
classification [7]–[10].

However, when recording with different devices, recorded
signals are not synchronized due to a sampling time offset
(STO) and sampling rate offset (SRO). This may occur because
the acoustic signal is converted to a digital signal by the
AD converters in each device. In acoustic scene classifica-
tion (ASC), this lack of synchronization degrades processing
performance because time difference information plays an
important role [7]–[9]. In addition, when there is also missing
data in multi-channel signals due to microphone malfunctions,
packet loss in network errors, and faulty connections of the
microphone cable, ASC performance is significantly degraded
because the multi-channel signals with missing data differ from
those without missing data [11], [12].

Many blind synchronization methods have been proposed
using only recorded signals [13]–[16]. On the other hand, a
synchronization method that can cope with various types of
missing data is desirable, although a study [17] that performs
online SRO estimation based on a probability model of packet

Fig. 1. Conceptual diagram of correspondence estimation based on DP
matching. Each node indicates a cross-correlation of short-time frame signals,
and the path represents the estimated correspondence. Note that the actual
matching is performed on an overlapped-frame sequence.

loss and a study [18] that detects the presence of missing data
using CNNs have been proposed.

Synchronization of asynchronous signals is generally per-
formed using frame-by-frame correlations between signals, but
under conditions where signals include missing data, it is
not possible to simply add and accumulate the correlations
between frames. For periodic signals, dynamic addition using
their periodicity has been proposed [19], but this method
cannot be used directly when the target is arbitrary.

In this study, we propose a new method to synthesis
synchronous signals by blindly estimating the frame-by-frame
correspondence of asynchronous signals including SROs and
missing data by combining frame-by-frame correlation be-
tween signals and dynamic programming (DP) matching [20]
(see Fig. 1). We confirm the effectiveness of the proposed
method through evaluation experiments.

II. RELATED WORKS

Several blind SRO estimation methods using only recorded
signals without prior information have been proposed [13]–



[16], [21], [22]. In these methods, SRO is estimated using the
methods based on Linear phase drift (LPD) model. The meth-
ods based on coherence drift (CD) calculate the complex coher-
ence between two consecutive time frames in frequency [21].
In the correlation maximization (CM)-based methods [14], the
optimal SRO is searched to maximize the correlation between a
pair of signals after resampling. There are also methods based
on maximum likelihood (ML) [13]. Meanwhile, online SRO
estimation methods assuming a statistical model for partial
missing samples in recorded signals have been proposed [17].

III. PROBLEM SETTINGS

We consider the problem of synchronizing two discrete
signals, x[n] and y[n]. We assume that these signals capture
the same audio signals but are not synchronized, specifically
due to the time drift caused by sample rate offset (SRO) and
partial data loss caused by packet loss or other reasons. The
problem here is to produce ŷ[n], which is synchronized to x[n],
from y[n] by stretching and compressing the time axis.

Even if SRO or missing samples occur, there should be
pairs of short-time frames in the two signals that have corre-
lation. Then, we consider synchronizing two signals x[n], y[n]
by estimating the correspondence between short-time frame
signals xi[m](i = 0, . . . , I − 1) and yj [m](j = 1, . . . , J − 1),
which are split from x[n], y[n] with frame length L and frame
shift S. The variables i and j are short time frame indices,
and m = 0, . . . , L − 1 is the local discrete-time index in
the frame. The relation between the short-time frame signal
and the original signal is expressed using an analysis window
wa[m] of length L as follow:

xi[m] = wa[m]x[iS +m]. (1)

The frame signal yj [m] is calculated in the same way as xi[m].

IV. PROPOSED METHOD

A. Estimation of correspondence between short-time frames
1) DP matching: DP matching [20] is a well-known method

for finding the correspondence between two sequences that
include insertions, deviations, stretches, and contractions. In
this study, we consider the use of DP matching for synchro-
nizing xi[m] and yj [m] in the presence of missing or SROs.
Specifically, we seek the path (ik, jk) that maximizes the
cumulative score D calculated using the node score di,j and the
edge score e(ik−1,jk−1),(ik,jk). When the optimal path contains
(ik, jk), xik [m] and yjk [m] are in correspondence. The score
D is given as

D =

K∑
k=1

dik,jk + e(ik−1,jk−1),(ik,jk), (2)

where K is the optimal path length, (i0, j0) = (0, 0) and
(iK , jK) = (I − 1, J − 1), respectively. The k-th correspon-
dence (ik, jk) satisfies the following constraints (see Fig. 2).

(ik, jk) ∈ {(ik−1 + 1, jk−1),

(ik−1, jk−1 + 1),

(ik−1 + 1, jk−1 + 1)}.
(3)

Algorithm 1 Algorithm of Dynamic Programming Matching
Input: d, e, I, J
Output: (ik, jk)

K
k=0

1: D0,0 ← d0,0
2: for i = 0, . . . , I − 1 do
3: for j = 0, . . . , J − 1 do
4: if (i, j) ̸= (0, 0) then
5: Λ← {(i− 1, j), (i, j − 1), (i− 1, j − 1)}
6: (̂i, ĵ)← arg max

(i′,j′)∈Λ,i′≥0,j′≥0

Di′,j′ + e(i′,j′),(i,j)

7: Di,j ← Dî,ĵ + di,j + e(̂i,ĵ),(i,j)
8: previ,j ← (̂i, ĵ)
9: end if

10: end for
11: end for
12: (i, j)← (I − 1, J − 1)
13: K ← 0
14: while (i, j) ̸= (0, 0) do
15: (i, j)← previ,j

16: K ← K + 1
17: end while
18: (iK , jK)← (I − 1, J − 1)
19: for k = K − 1, . . . , 0 do
20: (ik, jk)← previk+1,jk+1

21: end for

The algorithm for DP matching is shown in Algorithm 1. The
inputs are all node scores d, all edge scores e, and the number
of frames I, J for each signal. The output is a path (ik, jk)

K
k=0

that maximizes Eq. (2).
2) Node scores: The node score of xi[m] and yj [m] is

the similarity between their frames. The variables di,j and
ui,j are the maximum value (node score) and the position
of maximum value (time difference) of the normalized cross-
correlation function ci,j [τ ], respectively.

di,j = max
0≤|τ |≤S

2

{ci,j [τ ]} , (4)

ui,j = argmax
0≤|τ |≤S

2

{ci,j [τ ]} , (5)

ci,j [τ ] =

∑L−1
m=0 xi[τ +m]yj [m]√∑L−1

m=0 x
2
i [m]

√∑L−1
m=0 y

2
j [m]

. (6)

The reason why the range of |τ | is restricted to S/2 is that if
|τ | exceeds S/2, the target frame is considered to correspond
to another frame. The frame signal xi[m] is defined for any
integer a as

xi[m] = xi[m+ aL]. (7)

3) Edge scores: Edge scores are given as

e(ik−1,jk−1),(ik,jk)

=


0 if (ik, jk) = (ik−1 + 1, jk−1),
0 if (ik, jk) = (ik−1, jk−1 + 1),
p if (ik, jk) = (ik−1 + 1, jk−1 + 1).

(8)

The score of (ik, jk) = (ik−1 + 1, jk−1 + 1) as p is based on
the prior information that the time axis of the signals x[n] and
y[n] proceed in the same way due to almost same sampling

2



@ÜÖ?5áÝÖ?5 @ÜÖáÝÖ?5

@ÜÖ?5áÝÖ @ÜÖáÝÖ
r

L
r

Fig. 2. Edge score (Eq. (8)). d and p indicate edge and node score,
respectively.

frequency. Here, a diagram of the edge scores is shown in
Fig. 2.

B. Method 1 for synthesis of a synchronized signal: Overlap-
add on DP path

We propose two methods to produce the synchronized signal
in this paper. The first method is to apply the overlap-add
technique along the DP path. In this method, using the corre-
spondence (ik, jk) estimated by DP matching, time difference
uik,jk , and x[n], The synchronization signal ŷ[n] is estimated
by

ŷ[n] =

J∑
j=0

ỹj [n− jS]. (9)

Here, ỹj [m] is the frame obtained by using the correspondence
and time difference, and it is defined as

ỹj [m] =

{
0 if Ij = Ij−1,
ws[m]xIj

[m+ uIj ,j ] else,
(10)

where ws[m] is a synthesis window for wa[m]. The variable
Ij denotes the indice of the frame that has the largest node
score among the frames that correspond to yj [m], and it is
denoted as

Ij = argmax
ik,k∈{k|jk=j}

{dik,j} . (11)

C. Method 2 for synthesis of a synchronized signal: Missing
interval identification and linear phase compensation

The other method to synthesize a synchronization signal is
to identify a missing interval using the DP correspondence and
performing SRO compensation with linear phase compensation
for the non-missing interval (see Fig. 3).

First, the set of indices of frames estimated as missing
intervals is given as

ψ = {j | Ij = Ij−1} . (12)

For any i, the set of j that corresponds to the missing intervals
and is contained in ψ is given as

ξi = {j | (Ij = i) ∧ (j ∈ ψ)} . (13)

Fig. 3. Framework of missing intervals estimation and linear phase com-
pensation. x′[n] and y′[n] are non-missing intervals of asynchronous signal
and reference signal. ŷ′[n] is a synchronized signal using x′[n] after SRO
compensation.

The set of i represented as the missing location in x[n] is
denoted as

ι = {i | ξi ̸= ϕ} , (14)

where ϕ indicates the empty set. The set ι is sorted in as-
cending order, with elements denoted by ι1, ι2, · · · , ιq, · · · , ιQ,
where Q is the number of estimated missing intervals and Q+1
non-missing intervals. The partial signals x′q[n] and y′q[n] are
the q-th (1 ≤ q ≤ Q + 1) non-missing interval in x[n] and
y[n], respectively. The frame indices range of x′q[n] and y′q[n]
are given as

q−1∑
s=1

min ξιs −
q−2∑
s=1

max ξιs ≤ i <

q∑
s=1

min ξιs −
q−1∑
s=1

max ξιs ,

(15)
max ξιq−1

≤ j < min ξιq . (16)

We apply SRO compensation [13] for x′q[n] and y′q[n].

V. EXPERIMENTS

A. Experimental condition

In this study, we chose speech signals with few silent
intervals as a relatively straightforward example for our ex-
periments. This choice allows us to evaluate the fundamental
performance of the proposed method. Extending the exper-
iments to more challenging scenarios, such as using envi-
ronmental sounds for real-world acoustic scene classification
(ASC), will be addressed in future work. Specifically, we
used five speech signals from Japanese Newspaper Article
Sentences (JNAS) [23] of Acoustical Society of Japan (ASJ).
The sampling frequency was 16000 Hz. We conducted two
cases: (a) using the same utterance, and (b) using convolutive
mixtures simulated by [24].

In (a), we made ten mixtures of two speakers using five
speech signals of three seconds. For each experiment, we
added white noise to the mixture and treated it as a reference
signal. For the asynchronous signal, we added white noise,
which differed from the reference signal. The signal was
resampled to a sampling frequency of 16001.6 Hz by cubic
spline interpolation and then missed part of 22500 to 25500
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Fig. 4. Arrangement of sound sources and microphones in simulation
experiments.The room size is (8× 6× 4).
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Fig. 5. Average SI-SDR of 10 utterances for each SNR

samples. Each white noise was added so that the signal-to-
noise ratio (SNR) to mixtures was 5, 10, 15, 20, 25, and 30 dB.

In (b), we made ten mixtures of two speakers where we
convolved speech signals with an impulse response generated
by simulation [24] (see Fig. 4). The room size is (8 × 6 ×
4), and there are two microphones and two sound sources.
The reverberation time is 200 ms, and there is no noise. We
regarded the recorded signal of mic1 as a reference signal.
We resampled and missed the recorded signal of mic2 as in
experiment (a) and regarded it as an asynchronous signal.

To verify the effectiveness of the proposed method, we
compared it with linear phase compensation [13]. In the
proposed method, frame length L = 320 samples, frame shift
S = 80 samples, window function was Hamming window, and
p in (8) was 1.5. In the linear phase compensation method,
frame length, frame shift, and window function were the same
as the parameters of the proposed method. For the evaluation,
we used the scale-invariant signal-to-distortion ratio (SI-SDR)
of the asynchronous signal and signal before resampling and
missing.

B. Results
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Fig. 6. Correspondence using the proposed method (“proposed”) and oracle
information (“oracle”) for an utterance signal of SNR 5 dB. The signal shown
on the horizontal axis include missing interval from 22500 to 25500 samples.

Fig. 7. Node score computed between signals. The signal shown on the
horizontal axis include missing interval from 22500 to 25500 samples.

1) Results in (a): Figure 5 shows the average SI-SDR of
10 utterances for each SNR. “Overlap-add on DP path” and
“Missing intervals estimation and linear phase compensation”
represent the proposed methods described at Section IV-B
and Section IV-C, respectively. “Linear phase compensation”
is the conventional method [13] and “Unprocessed” is the
Unprocessed case. The results show that “Linear phase com-
pensation” performs better than “Unprocessed” due to SRO
compensation, but both have a lower. It was considered that
these methods could not compensate missing frame correspon-
dence. On the other hand, the proposed methods (“Overlap-add
on DP path” and “Missing intervals estimation and linear phase
compensation”) improved SI-SDR compared to “Unprocessed”
and “Linear phase compensation” by more than 10 dB. Thus,
we confirmed the effectiveness of the proposed methods.
Furthermore, SI-SDR of “Missing intervals estimation and
linear phase compensation” was higher than “Overlap-add
on DP path” at low SNR. This is thought to be because
linear phase compensation robustly worked in the presence of
noise. However, in high SNR, “Missing intervals estimation
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TABLE I
AVERAGE SI-SDR FOR EACH METHOD.

Unproc. Linear Phase
comp. [13]

Missing intervals est.
and linear phase comp.

Overlap-add
on DP path

SI-SDR -2.66 -2.83 13.41 9.52

and linear phase compensation” was lower than “Overlap-
add on DP path”. This is thought to be because the missing
interval estimation was performed on a frame-by-frame, and
the missing part of a sample-by-sample couldn’t be considered.

We also showed the example of correspondence and node
score for a more detailed analysis of the proposed method. Fig-
ures 6 and 7 show the alignment path and node score when the
SNR was 5 dB. “Proposed” is the correspondence estimated
by DP matching, and “Oracle” is the correspondence based
on prior information. As for the estimation of correspondence,
Figs. 6 and 7 show that “Proposed” has a path similar to that
of “Oracle”. It suggests that DP matching considered the local
correspondences and allowed proper estimation even when low
correlation was caused by noise in some areas.

2) Results in (b): Table I shows the SI-SDR for each
method in the simulation experiment. “Unprocessed” corre-
sponds to Unprocessed, “Linear phase comp.” corresponds
to Linear phase compensation, “Missing intervals est. and
linear phase comp.” corresponds to estimation and linear phase
compensation, and “Overlap-add” corresponds to Overlap-add
on DP path.

The table shows that SI-SDR of proposed methods improved
more than 10 dB compared with “Unprocessed”. We also con-
firmed that the SI-SDR difference between “Overlap-add on
DP path” and “Missing intervals est. and linear phase comp.”
was about 4 dB. It was considered that the time difference
estimation of “Overlap-add on DP path” was affected by the
time difference of arrival due to reflected waves of speakers.
On the other hand, “Missing intervals est. and linear phase
comp.” had to estimate a parameter SRO, thus robustly worked.

VI. CONCLUSIONS

In this paper, we proposed a new method for blindly
synchronizing signals with SRO and missing data, and describe
two methods for synthesizing synchronized signals based on
the correspondence between frames estimated by DP matching.
The first method involves overlap-adding the corresponding
frames along the DP path, while the second method identifies
missing intervals and compensates for the SRO using linear
phase compensation. Evaluation experiments have demon-
strated the effectiveness of these methods. Future work will
focus on enhancing the performance of the proposed methods
and exploring their application to array signal processing.
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