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Abstract—Camera model identification(CMI) has been a well-
established passive forensic technique in recent decades. Previous
research primarily focused on unaltered images, while real-world
scenarios often involve malicious attacks. With the rapid advance-
ment of AI compression technology, it is becoming increasingly
popular and prevalent in various applications. However, our
experimental study demonstrates that the camera model identifi-
cation drops dramatically when applied to AI-compressed images
without any processing. In order to enhance the robustness of the
camera model identification algorithm against AI compression
attacks, we propose a multi-domain camera model identification
feature restoration Network. Firstly, a spatial and frequency
domain dual branch architecture is proposed to restore forensic
features from AI compressed image patches. The frequency
feature restoration module employs an unbalanced restoration
strategy in amplitude and phase for efficient network training
and improved identification robustness. Afterwards, a feature
fusion and selection module are utilized to fuse and filter restored
features, where double pooling cross fusion strategy is adopted
in channel attention mechanism for making full use of channel
statics. Experimental results show that the proposed method can
efficiently restore camera model related forensic features and
significantly improve the performance of the CMI model on AI
compressed images.

I. INTRODUCTION

The widespread of imaging devices and advancements in
image generation algorithms have significantly enhanced the
accessibility and quality of images. However, this presents
substantial challenges in image authenticity verification [1].
Being a passive forensic technique, Camera model identifica-
tion(CMI) aims to determine the origin of images by analyzing
features such as photo response non-uniformity, sensor noise
patterns [2] and so on. It has found wide applications in image
forensics, copyright protection, and privacy protection [3].

In recent years, deep learning-based image compression
techniques have made significant progress. The Jpeg Associa-
tion is working on the JPEG AI standard [4]. AI compression
is considered as a strong candidate for the next generation
of image compression techniques, and is highly likely to
receive widespread deployment in industrial applications in
the future [5], [6]. However, malicious use of AI compression
can seriously disrupt forensic and investigative efforts[4]. To
the best of our knowledge, how AI compression affects the

Fig. 1. AI compression significantly decreases the accuracy of camera model
identification(CMI). The proposed MDFRNet aims to restore CMI related
forensic features from multiple domains to adapt AI compressed patches to
prevalent CMI networks for correct camera model prediction.

accuracy and effectiveness of CMI has not been reported in
literatures.

In this study, we carry out experimental evaluation of the
camera model identification performance taken AI compressed
image patches as network input to current prevalent CMI
networks. Results reveal that most CMI networks fail without
any processing. To address this issue, a Multi-Domain camera
model identification Feature Restoration Network(MDFRNet)
is proposed. As depicted in Fig.1, a dual branch architecture is
adopted to restore complementary features from the frequency
and spatial domains and successfully improves the accuracy
of the CMI network on AI compressed images. The primary
contributions of this study are summarized as follows:

• This study pioneers the study of AI compression attack
in camera model identification, highlighting that while AI
compression achieves high-quality image compression, it
often alters critical source camera features, making it
susceptible to malicious attacks.

• A multi-domain camera model identification feature
restoration network(MDFRNet) is proposed to restore
forensic features from both spatial and frequency do-
mains, and successfully improve CMI accuracy on AI-
compressed images.

• Experimental validation across multiple CMI methods
demonstrate the method’s effectiveness in restoring identi-
fication features distorted by AI compression. The results
affirm the robustness and versatility of proposed network.



Fig. 2. Frequency domain comparison of images with and without HIFIC compression. (a) Average amplitude of 100 images. (b) Average amplitude of HIFIC
compressed images. (c) A typical visualization of lateral average amplitude. (d) A typical visualization of longitudinal average amplitude. (e) Average phase of
original images. (f) Average phase of HIFIC compressed images. (g) A typical visualization of lateral average phase. (h) A typical visualization of longitudinal
average phase.

II. RELATED WORKS

How to extract camera model related features from noise
residual to suppress the influence of image content plays an
important role in camera model identification. To address this
issue, Davide et al. [7] developed a noise residual extraction
method using frequency domain constraints. Rafi et al. [8]
proposed the Remnet to enhance intrinsic camera fingerprint
by suppressing image content, and then combined a dynamic
CNN-based preprocessing block with a shallow classifier and
verified the applicability of residual blocks for CMI tasks.
Bennabhaktula et al. [9] applied MobileNet with pre-trained
weights from ImageNet for transfer learning, and study the
relationship between deep learning network complexity and
recognition accuracy. Our previous work [10] improved VGG
with a fine-grained multi-scale residual prediction module to
boost recognition accuracy and reduce scene content influence.
Huan et al. [11] proposed ConvNeXt with a dual-path attention
mechanism and classical residual extraction to capture crucial
model features for camera provenance. Although literatures
have reported satisfying CMI results, for instance, the state-
of-the-art Remnet [8] has reached 94.6% accuracy on Dresden
dataset, and DPEC ConvNeXt [11] has achieved 83.1% on
VISION [12] dataset. Images inevitably undergo various post-
processing during transmission in practice, which will greatly
affect its application in real scenarios.

In recent years, with the continuous development of AI com-
pression technology, deep learning-based image compression
techniques have made significant progress. Some recent studies
[5], [13] have greatly outperformed traditional JPEG in terms
of PSNR and SSIM metrics. Toderici et al.[14] introduced a
full-resolution image compression method using RNNs and
neural networks for entropy coding. Balle et al.[15] proposed
an end-to-end variational autoencoder model, incorporating
hyperprior and spatial autoregressive models to optimize latent
representation encoding. GAN-based compression algorithms

now achieve high-quality images at very low bit rates. Mentzer
et al. [13] developed HiFiC, a GAN-based technique that
achieves perceptual fidelity close to the original image quality
at half the original bit rate. AI compression is undergoing rapid
development and is expected to be key technology of the next
generation of image compression standards in the near future.
Consequently, study of potential risks it may bring to related
applications is necessary.

Although visually consistent with the original image, AI
compression brings certain artifacts as a lossy compression
method. Bergmann et al.[6] were the first to study the com-
pression artifacts of HiFiC in the frequency domain, and the
detectability of these artifacts was evaluated. Berthet et al.
[4] have realized that AI compression is a novel unintended
attack method, and used HiFiC to attack the advanced tamper
detection network CatNet[16] to verify the aggressiveness
of AI compression in the field of tamper detection. To the
best of our knowledge, there is no in-depth study on the
impact of AI compression in the field of CMI at present.
However, existing research on source camera identification
mainly focuses on the detection of raw images, ignoring the
threats and challenges that AI compression may bring to the
source camera identification task.

III. THE PROPOSED METHOD

A. Frequency domain analysis of AI compressed images

Frequency domain analysis is very important to study
the underlying characteristics of artifacts introduced by AI
compression. Referring to the work of Bergmannet [6], we
experimentally compare the amplitude and phase difference
between original and AI compressed images which forms the
basis of our later proposed network and loss function design.

We randomly selected 100 images from the VISION dataset
[12], which is a widely acknowledged dataset in camera
model identification field. Central cropping is applied to
both original and HIFIC compressed sets to obtain series of
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256×256 patches. Fast Fourier Transform with N = 256 is
applied and the average amplitude is calculated for enhanced
feature robustness. Average amplitude of the original and AI
compressed images are shown in Fig.2(a) and (b), respectively.
To further compare their differences intuitively, we depict
typical lateral values in Fig.2(c) and longitudinal values in
Fig.2(d). Obviously, we can observe that the spectrogram of the
AI compressed images regularly shows peaks at 16 bisection
positions [6]. Furthermore, the average amplitude maintains
stable with respect to image contents when number of images
is greater than 50 in our experiment. Consequently, it can
serve as a template to regularize frequency domain features
in network training.

The average phase of the original and AI compressed
images are shown in Fig.2(e) and (f), respectively. Similarly, to
compare the difference introduced by HIFIC compression, we
also depict a typical lateral and longitudinal slice in Fig.2(g)
and (h). As compared with amplitude, phase variations are
more disordered and complex. Due its underlying modulus
2π characteristic of phase information, there is no regularity
observed in either average phase nor phase of any specific
image in our experiments. In contrast to the amplitude which is
intuitive and easy to understand, the complex of phase has been
reported in literatures [17], [18], and has long been the reason
that limits its application in feature representation. However,
phase contains rich information of nearby pixels and is of vital
importance to restore camera model related subtle features. We
will report our effort in exploiting phase information in CMI
feature restoration in subsequent sections.

B. Overview of proposed network

Given the fact that camrea model identificaiton (CMI) resutls
is significantly affected by artifacts introduced by AI compres-
sion, our motivation is to design a CMI feature restoration
network to restore camera model identification features. The
overall architecture of the proposed multi domain feature
restoration network (MDFRNet) is illustrated in Fig.3.

Since the state of the art CMI networks have been able
report satisfying performance on patches of size 64 × 64, we
also follow this setting. For the given input patch of 64 ×
64, the spatial domain feature restoration (SFR) module and
frequency domain feature restoration (FFR) module are applied
to restores camera model related forensic features from the
detection features. Then, concatenated features are fused and
enhanced by the feature fusion and selection(FFS) module with
specifically designed channel attention mechanism. Finally, the
fused features are fed into the CMI network to obtain final
camera identification results.

C. Multi-domain feature restoration module

To make better use of advantages of both spatial domain
and frequency domain methods, a dual branch multi-domain
feature restoration module is proposed. As depicted in Fig.3,
taking RGB patches as input, the spatial feature restora-
tion(SFR) module aims to restore spatial domain camera model
related forensic features with a UNet architecture. SFR outputs

are more intuitive as it directly operates on pixel values and
is able to provide better local relationship characterization.
While the frequency feature restoration (FFR) module has
more advantages in dealing with global features and periodic
components. As restored features of SFR and FFR modules are
finally concatenated for further fusion and selection, special
attention is paid to network design so that they have same
dimensions of feature maps.

In the encoding stage of the spatial feature restoration (SFR)
module, the 3-channel RGB patch is firstly passed through a
3 × 3 convolutional layer to adjust the number of channels
to 64. Each of the next four convolutional layers utilizes a
3 × 3 convolution kernel to double the number of feature
channels to 128 , whose feature map sizes are then halved
by Max pooling. In the decoding stage, the feature map is
passed through a convolution layer with a kernel size of 3× 3
to halve the number of channels. At the same time, the feature
map of the encoding layer is spliced with the feature map
of the decoding layer, and the number of channels of the
feature map is gradually halved. After four convolution and
pooling operations, we adjust the number of feature channels
to 3 through an output convolution layer with a kernel size of
1× 1.

In the frequency feature restoration(FFR) module, different
restoration strategies are adopted for amplitude and phase.
As for amplitude restoration, we intend to remove the effect
of AI compression by subtracting the average amplitude in-
crement (shown as Amplitude Mask in Fig.3). The average
amplitude increment is a residual obtained by subtracting the
average amplitude of the original patches from those of the
AI compressed patches. As for phase restoration, phase of
AI compressed patches are fed into the same Unet structure
for feature restore, where the original phase is utilized in a
supervised manner to guide the network learning of complex
phase features. Finally, Inverse Fast Fourier Transform is used
to obtain FFR restoration features. Considering the frequency
domain stability, FFR also contributes to network training
difficulty reduction.

D. Feature fusion and selection module

The dual branch FFR and SFR modules offers comple-
mentary benefits. However, it can’t be ignored that there is
certain redundancy in these two features. A feature fusion
and selection module(FFS) is proposed to fully exploit their
complementarity and minimize redundancy. As shown in Fig 3,
based on spatial correspondence and complementarity between
spatial and frequency domain restoration features, the upper
branch fuses these features using two 3×3 convolution layers.
For the lower branch, we employ an improved channel statis-
tical feature calculation method to reduce feature redundancy.
Specifically, we employ two pooling modalities commonly
used in channel attention mechanisms: Max pooling and av-
erage pooling. Pooling values are fed into two convolution
layers with kernel size of 1 × 1, to obtain the inner features
that will be added to their own pooling values and the outer
features that will be added to other pooling values. The inner
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Fig. 3. Overall network structure of the proposed multi domain feature restoration network(MDFRNet).

features are multiplied with the outer features of the other
pooling, and then added to the pooling value to output the
cross values of each pooling. The maximum cross values and
the average cross values are added and convolved to obtain the
channel pooling information. The channel pooling information
and the features output by the feature restoration network are
multiplied channel by channel to obtain the fused and selected
restored features.

After a 1 × 1 convolutional layer to adjust the number of
channels, the restored features are sent to the CMI network for
detection. This dual-pooling cross-fusion strategy maximizes
the utilization of channel statistical information, significantly
enhancing feature representation.

E. Loss Function

To guide efficient learning of CMI related features, we
utilize three kinds of loss functions in the proposed network,
which are the spatial feature restoration loss, the frequency
feature restoration loss, and the camera model identification
loss.

(1)Spatial feature restoration loss: Lossspa evaluates the
spatial feature restoration capability of SFR module by com-
paring restored spatial features with the original patch:

Lossspa =
1

M

M∑
j=1

(yj − pj)
2 (1)

where y and p denotes the ground truth pixel value in the
original patch and restored output of the SFR module, M
represents the number of pixels within a patch.

(2)Frequency feature restoration loss: Lossfreq evaluates
the frequency feature restoration capability by comparing the
consistency of restored phase features with phase features of
the original image. Inspired by Noiseprint [10], we utilize
the geometric mean to arithmetic mean ratio of image phases
to constrained training of the FFR. For the original image
Iori(x, y), the frequency domain representations Fori(x, y) is

obtained by Fourier transform:

I(x, y)
FFT→ F (u, ν) (2)

The phase Pori(u, ν) is calculated by the phase formula as
follows:

P (u, v) = arctan

(
Im (F (u, ν))

Re (F (u, ν))

)
(3)

where Im (F (u, ν)) denotes the imaginary part of F (u, ν)
and Re (F (u, ν)) denotes the real part of F (u, ν).

Calculate the residual between the Pori (u, ν) and phase
restoration features PAI (u, ν) output to get R (u, ν):

R (u, ν) = Pori(u, v)− PAI(u, v) (4)

Assuming that the input batchsize is N, the average phase of
each batch can be expressed as S (u, ν):

S (u, ν) =
1

N

N∑
k=1

|Rk(u, ν)|2 (5)

The average loss per batch can be obtained by calculating the
ratio of the geometric mean to the arithmetic mean of S (u, ν)
and then taking the logarithm:

Lossfreq = log

[
SGM

SAM

]
=

[
1

K2

∑
u,ν

log (S (u, ν))

]
− log

[
1

K2

∑
u,ν

S (u, ν))

] (6)

Where K represents the input feature size. The ratio of the
geometric mean to the arithmetic mean reflects the character-
istics of the data distribution: The closer the ratio is to 1, the
better the phase feature is restored, and the closer the ratio is
to 0, the worse the restored phase feature is.

Source camera identification loss LossCMI is utilized to
provide supervised information by labeled source camera
ground truth. It is calculated based on the difference between
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Fig. 4. Confusion matrix comparison of AI compressed images with/without feature restoration. (a) CMI of the original images (b) CMI of compressed images
without feature restoration. (c) CMI of compressed images with feature restored by the proposed MDFRNet.

the camera identification predicted by the network and the
actual label of the original patch as:

LossCMI = −
K∑
i=1

q (xi) logp (xi) (7)

where q denotes the target distribution and p denotes the
predicted matching distribution, and K is total number of
camera models involved.

The total training loss L can be expressed as follows:

Loss = λ1Lossspa − λ2Lossfreq + λ3LossCMI (8)

where λ1, λ2 , and λ3 represent hyper-parameter controlling
contributions of different losses that can be empirically deter-
mined.

IV. EXPERIMENTAL RESULT

To evaluate the effectiveness of the proposed method, we
conduct series of experiments based on the Vision dataset,
which is the most well acknowledged dataset in camera model
identification field. We followed the experimental settings of
our previous work[11] that we selected 29 camera models
from them, and each camera model selected 100 images to
segment the patch, and the shooting scene was not restricted.
Our experiments are based on the deep learning framework
Pytorch 1.13.0 and Python 3.8.18. We used the RMSprop
optimizer with an initial learning rate of 0.0002 and weight
decay of 0.00001. The λ1 is set to 0.6, λ2 to 0.5, and λ3 to
0.8. We performed all the experiments reported in the paper
using a Nvidia A4000 graphics card.

In this paper, we verify the effectiveness of our proposed
MDFRNet on five CMI models. The results are shown in
TABLE 1. We use I0 to represent the original image, NCMI

represents the CMI network, IAI represents the image com-
pressed by AI algorithm, NMDFR means patches are restored
by MDFRNet before being sent to CMI network. The right
three columns represent the results for different cases. The
results show that after AI compression, the accuracy of all CMI
models decreases significantly, indicating that AI compression

is an effective attack method for the CMI task. After feature
restoration via the proposed MDFRNetwork, the detection
accuracy of all models is significantly improved. This shows
that the proposed MDFRNetwork can effectively resist the AI
compression attack for CMI.

TABLE I
IDENTIFICATION ACCURACY COMPARISON OF STATE-OF-THE-ART

CAMERA MODEL IDENTIFICATION NETWORKS WITH/WITHOUT FEATURE
RESTORATION.

Methods NCMI (I0) NCMI (IAI) NMDFR (IAI)

RemNet, Rafi 79.9 10.1 69.7
Res2Net, Liu 70.7 6.8 65.1

ResNet50, Bennabhaktula 78.2 10.1 66.3
MobileNet, Bennabhaktula 76.4 16.3 68.0

DPEC ConvNext, Huan 83.1 16.2 79.0

In Fig. 4, we show the confusion matrices corresponding
to NCMI (I0),NCMI (IAI) and NMDFR (IAI) using Huan’s
model. By comparing Fig.4(a) with Fig.4(b), it can be seen
the identification accuracy for most camera models drops
below 50%. It proves that AI compression causes damage
to the camera fingerprint. However, as shown in Fig.4(c),
when the identification features are restored by MDFRNet, the
identification accuracy of each camera model is significantly
improved.

We also compare with the fine-tuning, and do ablation
experiments on the network proposed in this paper. The results
are shown in Table 2. The fine-tuning uses weight trained using
original images, and the corresponding AI compressed patches
are used for training.

Setup#2 denotes that the average amplitude increment is
excluded, with channel attention relying solely on max pool-
ing. Setup#3 similarly indicates that the average amplitude
increment is not utilized. Setup#4 specifies that only the
max-pooling strategy is employed. Setup#5 signifies that the
feature restoration network is not applied for phase reconstruc-
tion. Setup#6 represents our proposed method. The results
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TABLE II
HUAN’S MODEL IS USED AS THE CMI NETWORK. EVEN WITH THE

REDUCTION OF SOME PROCESSING STEPS, OUR PROPOSED METHOD CAN
STILL OUTPERFORM THE COMMON FINE-TUNING(SETUP#1).

Setup Accuracy

#1 Fine-tune 72.5
#2 backbone 72.9
#3 wo/res 76.8
#4 wo/at 74.3
#5 wo/phase restore 76.2
#6 proposed 79.4

of these Settings provide further strong evidence to support
the effectiveness of our proposed method in restoring the
identification features.

V. CONCLUSIONS
In this paper, we experimentally evaluated current camera

model identification networks on AI compressed images for the
first time and found that AI compression is a powerful attack
against the CMI task. To counter this new attack, a multi-
domain camera model identification feature restoration net-
work is proposed. Comprehensive experiments are conducted
to evaluate the effectiveness of the proposed method. Signif-
icant identification performance improvement is observed on
AI compressed images. At present, our work is only based on
the AI compression algorithm. In the future, we will further
investigate the impact of new attacks such as using large
models to generate images on the camera model recognition
task.
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