
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

A Joint Graph Signal and Laplacian Denoising
Network Inspired by Majorization-Minimization

Zepeng Zhang∗ and Ziping Zhao†
∗ École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Email: zepeng.zhang@epfl.ch
† ShanghaiTech University, Shanghai, China

Email: zipingzhao@shanghaitech.edu.cn

Abstract—Graph neural network (GNN) models have presented
astonishing achievements in various application fields. However,
they are shown to be vulnerable to adversarial attacks on graph
structure and unnoticeable perturbations on the graph structure
can cause significant performance drops in GNN models. Based
on recent studies that reveal a class of GNN models is performing
graph signal denoising (GSD), in this paper, we design a novel
robust GNN model from a joint graph signal and Laplacian
denoising problem (GSLD), named GSLDN. Specifically, GSLDN
is built based on a block majorization-minimization algorithm for
solving the GSLD problem. Designed in such a principled way,
GSLDN is endowed with the power to fight against adversarial
attacks on graph structure. Experiment results demonstrate the
effectiveness of GSLDN.

I. INTRODUCTION

Graph neural networks (GNNs) have shown great power
in learning representations for graph-structured data and have
achieved impressive performance in various graph-related tasks
[1]. Typically, a GNN is a neural network consists of consec-
utive propagation layers, each of which contains two steps,
namely, the feature aggregation step and the feature trans-
formation step [2], [3]. The process of passing through the
consecutive propagation layers is also referred to as message
passing. Recent studies [4]–[6] have proven that the feature
aggregation steps in a class of GNNs can be interpreted as
performing graph signal denoising (GSD). Specifically, given
a graph G with N nodes, where each node is associated with
a feature vector xi ∈ RM , the GSD problem can be defined
as follows:

minimize
H

∥H−X∥2F + λtr
(
HTLH

)
, (1)

where H is the output after denoising (or after the message
passing process in a GNN), X = [x1, . . . ,xN]T ∈ RN×M

denotes the input feature matrix, λ represents a weight pa-
rameter, and L is the graph Laplacian matrix. From the un-
derlying GSD problem (1) corresponding to a class of GNNs,
e.g., graph convolutional network (GCN) [2] and approximate
personalized propagation of neural predictions (APPNP) [7],
it can be observed that the graph Laplacian matrix is assumed
to be credible enough. However, if the graph is noisy (e.g.,
contains task-irrelevant edges) or under adversarial attacks,
the performance of GNNs may drop significantly and even be
worse than the performance of a simple baseline that ignores

all the relational information among data features such as
multi-layer perceptrons [8], [9].

To improve the robustness of GNN models, some studies
suggest pre-processing the graph to refine the graph structure
before feeding it to a GNN model. For example, the GNN-
Jaccard method [10] proposes to remove edges that connect
nodes with feature vectors of low “Jaccard similarity”. Under
the observation that existing adversarial attack methods tend
to increase the rank of the graph adjacency matrix, [11] uses a
low-rank approximation version of the given graph adjacency
matrix as a substitute. Besides pre-processing the graph, there
are also some studies designing “graph learners,” which are
parameterized models to learn the graph structure matrix (e.g.,
the graph adjacency matrix) that are co-trained with the GNN
models [12], [13]. These previous studies, however, all focus
on augmenting extra components to the existing GNN models
to improve their robustness instead of designing new GNN
architectures that are inherently robust.

Inspired by recent studies that build GNNs from an under-
lying optimization problems and the corresponding iterative
algorithms [14]–[16], in this paper, we present GSLDN, which
is designed based on a joint graph signal and Laplacian
denoising (GSLD) problem. Specifically, the GSLD problem
is first reparameterized using the graph Laplacian operator to
reduce the parameter dimension. The reparameterized problem
is tackled via the block majorization-minimization (BMM)
algorithm, which not only gives iterative steps that are friendly
to back-propagation training but also guarantees convergence
to stationary points. Then a robust and interpretable message
passing scheme is induced from the BMM algorithm, based on
which we develop GSLDN. Built on a BMM algorithm, the
message passing procedure in a trained GSLDN is naturally
a parameter-optimized BMM algorithm for solving the GSLD
problem. Thus, GSLDN model is endowed with the power to
fight against adversarial attacks on the graph structure. The
experiment results on real-world datasets demonstrate that the
proposed GSLDN model is resistive to adversarial attacks.

II. GRAPH SIGNAL AND STRUCTURE DENOISING

We consider a positively weighted undirected graph G =
(V, E ,W), where V represents the vertex set containing N
nodes, E denotes the edge set, and W ∈ RN×N is the
weight matrix with wij indicating the pairwise relationship

between the i-th node and the j-th node. The degree matrix
D ∈ RN×N is a diagonal matrix whose i-th diagonal element
dii =

∑N
j=1 wij . The positive semi-definite Laplacian matrix

is accordingly defined as L = D −W. Assuming each node
is associated with a feature vector xi ∈ RM , then the feature
matrix is defined as X = [x1, . . . ,xN]T ∈ RN×M . Each
column of X can also be interpreted as a graph signal.

A. Problem Formulation

In this section, we will introduce the GSLD problem, which
augments the GSD problem (1) with graph Laplacian learning
components to help mitigate the influence of adversarial at-
tacks on graph structure.

For the GSD problem (1), we notice that it only concerns
with denoising the graph signal while assumes the Laplacian
matrix to be accurate enough. However, when the graph
structure is maliciously manipulated by an attacker, such
assumption will result in unsatisfactory model performance
and may lead to dramatic consequences. Specifically, it has
been shown that with unnoticeable and carefully designed
modifications, the performance of GNN models significantly
drops and may even be worse than the performance of a simple
baseline that ignores all relational information [8], [9].

In order to handle potentially attacked graph structures,
we propose to augment the objective in Problem (1) with
a Laplacian learning term, i.e., ∥L − Ln∥2F , where L is the
refined Laplacian matrix that needs to be optimized and Ln is
the given attacked Laplacian matrix. Then the objective of the
GSD problem becomes

f (H,L) = ∥H−X∥2F + γ∥L−Ln∥2F + λtr
(
HTLH

)
. (2)

Under the assumption that the denoised feature H is smooth
over the refined graph L, by minimizing f (H,L), the influ-
ence of the adversarial attacks can be mitigated.

It is evident that the Laplacian matrix is symmetric with
degrees of freedom equal to N(N−1)

2 . Thus, the Laplacian

matrix L can be determined by a vector w ∈ R
N(N−1)

2
+

and the f (H,L) can be reparameterized accordingly. By
reparameterizing L to w through the graph Laplacian operator,
the dimension of variables is reduced and the positive semi-
definiteness of L is satisfied naturally. In the following, we
first introduce the notion of graph Laplacian operator [17].

Definition 1. The graph Laplacian operator L : R
N(N−1)

2 →
RN×N , w → Lw, is defined as

[Lw]ij =

−wkij

i > j,

[Lw]ji i < j,

−
∑

j ̸=i [Lw]ij i = j,

where kij = i− j + j−1
2 (2n− j).

Similarly, the inverse graph Laplacian operator is defined as
L−1 : RN×N → R

N(N−1)
2 such that w = L−1Lw. Based on

the graph Laplacian operator, we can derive its adjoint operator
L∗, which satisfies tr

(
(Lw)TY

)
= wTL∗Y [17].

Definition 2. The adjoint operator of the graph Laplacian
operator L, i.e., L∗ : RN×N → R

N(N−1)
2 , Y → L∗Y, is

defined as

[L∗Y]k = Yii − Yij − Yji + Yjj , k = 1, . . . ,
N(N − 1)

2
,

where i, j ∈ Z+ satisfy k = i− j + j−1
2 (2n− j) and i > j.

To better understand the graph Laplacian operator and its
adjoint operator, more discussions and examples can be found
in [17]. Using the notion of Laplacian operator, we rewrite
f (H,L) (where f is reused with a little abuse of the notation)
as:

f(H,w) = ∥H−X∥2F + γ∥Lw − Ln∥2F + λtr
(
HTLwH

)
.

Considering that real-world graphs are generally sparse and
low-rank [18], we further consider regularization terms, i.e.,
||Lw||1 and ||Lw||∗, to promote the sparsity and the low-
rankness of the learned Laplacian matrix Lw. It can be proved
that ||Lw||1 = 4||w||1. Besides, since Lw is positive semi-
definite, we have ||Lw||∗ = tr(Lw) = 2||w||1. Thus, the spar-
sity and the low-rankness promoting property can be achieved
with a single regularization term ||w||1. To restrict the scale
of the Laplacian matrix, we further consider a regularization
term ||w||22. Finally, the GSLD problem is defined as follows:

minimize
H,w≥0

f(H,w) + α∥w∥1 + β∥w∥22, (3)

where α and β are positive weighting parameters.

B. Solving Problem (3) via BMM
In this section, we will develop an efficient and convergent

BMM algorithm for solving Problem (3). Denoting H(k−1) and
w(k−1) as the value of H and w after the (k− 1)-th iteration,
with H(0) and w(0) being the initial points, we derive the
update steps of H and w at the k-th iteration in the following.
To proceed with the resolution, we introduce a useful lemma.

Lemma 3 ([19]). For a continuously differentiable function
f(X) where ∇f is Lipschitz continuous with Lipschitz constant
L, the following result holds for all X,Y ∈ RN×M and ξ ≥
L:

f (X) ≤ f (Y) + tr
(
(X−Y)

T ∇f (Y)
)
+

ξ

2
∥X−Y∥2F .

1) The Resolution of the H-block Subproblem: With w
being held fixed, the subproblem w.r.t. H becomes

minimize
H

h(H |w(k−1)) = ∥H−X∥2F+λtr
(
HTLw(k−1)H

)
.

Let λ
(k−1)
max be the largest eigenvalue of Lw(k−1). Then the

Lipschitz constant of ∇h(k−1) (H) is 2 + 2λλ
(k−1)
max . With

η(k) ≥ 2+2λλ
(k−1)
max , we can construct a majorization function

of h(k−1) (H) based on Lemma 3 as follows:

p
(
H | w(k−1),H(k−1)

)
=∥H(k−1) −X∥2F + tr

(
λ(H(k−1))TLw(k−1)H(k−1)

)
+ tr

(
(H−H(k−1))TD(k−1)

)
+

η(k)

2
∥H−H(k−1)∥2F ,

2

where D(k−1) = 2H(k−1)−2X+2λLw(k−1)H(k−1). Ignoring
the constant terms in p

(
H | w(k−1),H(k−1)

)
, we obtain a

surrogate optimization problem as follows:

minimize
H

∥H−H(k−1) +
1

η(k)
D(k−1)∥2F .

This surrogate optimization problem has a closed-form solu-
tion, which leads to following update rule:

H(k) = H(k−1) − 1

η(k)
D(k−1). (4)

Note that this update step can also be interpreted as a gradient
step with a stepsize of 1

η(k) .
2) The Resolution of the w-block Subproblem: With H

being held fixed, the subproblem with respect to w becomes

minimize
w≥0

w(w | H(k−1)) = ∥Lw∥2F − 2tr
(
LT
nLw

)
+

λ

γ
tr
(
(H(k−1))TLwH(k−1)

)
+

α

γ
∥w∥1 +

β

γ
∥w∥22,

where we omit the constant term ∥Ln∥2F . Using the adjoint
operator L∗, we have

w(w | H(k−1)) = ∥Lw∥2F −wT c(k−1) +
β

γ
∥w∥22,

where c(k−1) = L∗[2Ln − λ
γH

(k−1)(H(k−1))T
]
− α

γ 1 with

1 ∈ R
N(N−1)

2 being the all-one column vector. Due to the
non-negativity constraint, the w-block subproblem does not
have a closed-form solution. To obtain closed-form solution,
we employ a majorization technique [20].

According to [17, Lemma 1] and [17, Lemma 3], we
conclude that the ∥Lw∥2F is L-smooth with L = 2N . Thus,
we can construct a majorization function of ∥Lw∥2F with
ξ(k) ≥ 2N based on Lemma 3, leading to a majorization
function of w(w | H(k−1)) as follows:

g
(
w | w(k−1),H(k−1)

)
= ∥Lw(k−1)∥2F + 2

(
w −w(k−1)

)TL∗L
(
w(k−1)

)
+

ξ(k)

2

∥∥w −w(k−1)
∥∥2 −wT c(k−1) +

β

γ
∥w∥22.

Note that ξ(1), . . . , ξ(K) can be set to be the same or varying
in different layers. Ignoring the constant terms in g

(
w |

w(k−1),H(k−1)
)
, we obtain a surrogate optimization problem

as follows:

minimize
w≥0

(
ξ(k)

2
+

β

γ

)
∥w∥22 −wTb(k−1), (5)

where b(k−1) = ξ(k)w(k−1) +2L∗L
(
w(k−1)

)
− c(k−1). Then

using the KKT optimality condition, we have the following
update rule:

w(k) =
γ

γξ(k) + 2β
ReLU

(
b(k−1)

)
. (6)

In conclusion, in each iteration, the BMM algorithm update
H as in Eq. (4) and update w as in Eq. (6). The convergence

property of the proposed algorithm is stated in the following
theorem.

Theorem 4. With η(k) ≥ 2+2λλ
(k−1)
max and ξ(k) ≥ 2N for k =

1, . . . ,K, the BMM algorithm for solving the GSLD problem
(3) with update rules as in Eq. (4) and Eq. (6) converges to
the stationary points.

Proof: With η(k) ≥ 2 + 2λλ
(k−1)
max and ξ(k) ≥ 2N

for k = 1, . . . ,K, the proposed algorithm is a standard
BMM algorithm. Thus, following the convergence results for
general BMM algorithms [21], the proposed algorithm ensures
convergence to stationary points.

III. THE GRAPH SIGNAL AND LAPLACIAN DENOISING
NETWORK

Based on the BMM algorithm developed in Section II-B,
we present the GSLDN below.

GSLDN Architecture

H(0) = ReLU (ReLU (XΘ1)Θ2) , w(0) = L−1Ln,

for k = 1, . . . ,K,
H(k) =

(
1− 2η(k)

)
H(k−1)

−2η(k)λLw(k−1)H(k−1) + 2η(k)X,

w(k) = γ
γξ(k)+2β

ReLU
(
b(k−1)

)
Z = softmax

(
H(K)

)
.

In the above GSLDN, Θ1 and Θ2 are the learnable weight
matrices and Z is the output probability matrix for prediction.
Note that we use the decoupled structure as in APPNP [7], i.e.,
the feature aggregation steps are not intertwined with the fea-
ture transformation steps. Specifically, the feature transforma-
tion ReLU (ReLU (XΘ1)Θ2) is performed before conducting
the feature aggregation steps. To ensure the convergence of the
BMM algorithm, i.e., the message passing procedure, we can
set η(k) and ξ(k) as constants satisfying η(k) ≥ 2 + 2λλ

(k−1)
max

and ξ(k) ≥ 2N . To improve the model expressiveness and
save the computation of λ

(k−1)
max , we set η(k) and ξ(k) to be

learnable parameters. Since the GSLDN is induced from the
BMM algorithm, the message passing procedure in a trained
GSLDN is naturally a parameter-optimized BMM algorithm.

Since GSLDN is a GNN architecture, some extra compo-
nents used in existing graph structure learning methods, i.e.,
the pre-processing methods [10], [11] and the graph-learner
based methods [12], [13] can be used to further improve the
model performance, which we leave for future exploration.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on semi-supervised
node classification tasks with two real-world citation graphs,
i.e., Cora and Citeseer [22] to validate the effectiveness of the
proposed GSLDN.

3

A. Experiment Settings

To evaluate the effectiveness of GSLDN, we compare it with
GCN and several benchmarks that are designed from different
perspectives to robustify the GNNs, including GCN-Jaccard
[10] that pre-processes the graph by eliminating edges with low
Jaccard similarity of node feature vectors, GCN-SVD [11] that
uses the low-rank approximation of the given graph adjacency
matrix, Pro-GNN [12] that jointly learns a graph structure and
a GNN model guided by some predefined structural priors,
and Elastic GNN [14] that utilizes trend filtering instead
of Laplacian smoothing to promote robustness. For GCN-
Jaccard, GCN-SVD, and Pro-GNN, we use the implementation
provided in DeepRobust [23]. For Elastic GNN, we follow the
implementation provided in the original paper [14].

For each graph, we only consider the largest connected
component and randomly select 10%/10%/80% of nodes for
training, validation, and testing. The Adam optimizer is used
in all experiments. The models’ hyperparameters are tuned
based on the results of the validation set. The search space of
hyperparameters is as follows: 1) learning rate: {0.005, 0.01,
0.05}; 2) weight decay: {0, 5e-5, 5e-4}; 3) dropout rate: {0.1,
0.5, 0.8}; 4) model depth: {2, 4, 8, 16}. For GCN-Jaccard,
the threshold of Jaccard similarity for removing dissimilar
edges is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1}. For
GCN-SVD, the reduced rank of the graph is tuned from {5,
10, 15, 50, 100, 200}. For Elastic GNN, the regularization
coefficients are chosen from {3, 6, 9}. For Pro-GNN, we adopt
the hyperparameters provided in their paper [12].

B. Performance Under Adversarial Attack

We evaluate the model performance under the training-time
adversarial attacks [9], i.e., the graph is first attacked, and then
the GNN models are trained on the perturbed graph. Two types
of attacks are considered, namely, the global attack that aims to
reduce the overall performance of GNNs [9] and the targeted
attack that aims to fool GNNs on some specific nodes [8]. For
all the experimental results, we give the average performance
and standard variance with 10 independent trials. The best
model and the runner-up model are highlighted in bold and
wavy underlining, respectively.

1) Model Performance Under Global Attack: For the global
attack, we use a representative method called meta-attack [9]
and the results at a 20% and a 25% perturbation rate are
showcased in Table I. For GCN-Jaccard method, we use the
results reported in [12]. From the table, we observe that the
proposed GSLDN model achieves better or comparative results
compared with other methods. Specifically, the GSLDN out-
performs other GNN architectures, i.e., GCN and Elastic GNN,
indicating that GSLDN can effectively resist the global attack.
For instance, GSLDN improves GCN by 11% on the Cora
dataset at a 25% perturbation rate. Note that although Pro-
GNN outperforms GSLDN in some cases, it requires training
an additional graph learner. Moreover, the graph learner used
in Pro-GNN can also be used to boost the performance of
GSLDN, which we leave for future work.

TABLE I
CLASSIFICATION PERFORMANCE UNDER GLOBAL ATTACK

Ptb. rate Cora Citeseer
0.2 0.25 0.2 0.25

GCN 61.5 ± 2.2 56.8 ± 1.4 59.7 ± 0.8 60.0 ± 1.0
GCN-Jaccard 65.7 ± 0.9 60.8 ± 1.1 59.3 ± 1.4 59.9 ± 1.5
GCN-SVD 58.8 ± 2.1 59.1 ± 2.7 65.8 ± 0.7 62.3 ± 0.6
Pro-GNN 70.1 ± 2.5

:::
67.0

::
±

:::
1.6 70.1 ± 1.1 69.7 ± 0.9

Elastic GNN 68.3 ± 3.5 65.8 ± 2.5 61.6 ± 1.8 64.0 ± 2.2
GSLDN

:::
69.2

::
±

:::
2.0 67.8 ± 1.1

:::
67.3

::
±

:::
0.4

:::
66.5

::
±

:::
0.8

TABLE II
CLASSIFICATION PERFORMANCE UNDER TARGETED ATTACK

Ptb. number Cora Citeseer
4.0 5.0 4.0 5.0

GCN 61.5 ± 2.2 56.8 ± 1.4 62.5 ± 1.6 52.7 ± 2.0
GCN-Jaccard 61.7 ± 1.1 59.5 ± 1.9

:::
76.3

::
±

:::
1.5 72.9 ± 1.7

GCN-SVD 58.8 ± 2.1 59.2 ± 2.7 62.2 ± 3.3 60.2 ± 6.7
Pro-GNN

:::
70.1

::
±

:::
2.5

:::
67.0

::
±

:::
1.6 75.7 ± 4.9

:::
74.0

::
±

:::
7.1

Elastic GNN 68.3 ± 3.5 65.8 ± 2.5 72.1 ± 5.6
:::
74.0

::
±

:::
3.9

GSLDN 70.5 ± 1.5 68.3 ± 4.5 78.2 ± 2.7 75.2 ± 3.5

2) Model Performance Under Targeted Attack: For the
targeted attack, we use a representative method called nettack
[8]. The results with 4 and 5 perturbations per targeted node
are reported in Table II. Specifically, following [12], we choose
the nodes in the test set with degrees larger than 10 as targeted
nodes and the classification performance is evaluated on target
nodes. From the table, we can see that the proposed GS2DNet
attains better performance than other baselines in all cases.
For instance, on the Citeseer dataset with 5 perturbations
per targeted node, GSLDN improves GCN by 22.5% and
outperforms other baselines by 1.2%. Such inspiring results
demonstrate that GSLDN can better resist targeted attacks than
other baseline methods.

V. CONCLUSION

In this paper, we first introduced graph Laplacian learning
components into graph signal denoising. Then we devel-
oped a block majorization-minimization algorithm for prob-
lem resolution, based on which we proposed the GSLDN
model. Designed from an optimization perspective, GSLDN
is endowed with the power of performing Laplacian learning
during the message passing procedure. Experiments validate
the robustness of GSLDN under both the global and targeted
attack.

4

REFERENCES

[1] L. Wu, P. Cui, J. Pei, and L. Zhao, Graph neural
networks: Foundations, frontiers, and applications. Sin-
gapore: Springer Singapore, 2022, p. 725.

[2] T. N. Kipf and M. Welling, “Semi-supervised classifi-
cation with graph convolutional networks,” in Interna-
tional Conference on Learning Representations, 2017.

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[4] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah,
“A unified view on graph neural networks as graph
signal denoising,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge
Management, 2021, pp. 1202–1211.

[5] M. Zhu, X. Wang, C. Shi, H. Ji, and P. Cui, “Interpreting
and unifying graph neural networks with an optimiza-
tion framework,” in Proceedings of the Web Conference,
2021, pp. 1215–1226.

[6] Z. Zhang and Z. Zhao, “Towards understanding graph
neural networks: An algorithm unrolling perspective,”
arXiv preprint arXiv:2206.04471, 2022.

[7] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Pre-
dict then propagate: Graph neural networks meet per-
sonalized pagerank,” in International Conference on
Learning Representations, 2018.

[8] D. Zügner, A. Akbarnejad, and S. Günnemann, “Ad-
versarial attacks on neural networks for graph data,” in
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2018, pp. 2847–2856.

[9] D. Zügner and S. Günnemann, “Adversarial attacks on
graph neural networks via meta learning,” in Interna-
tional Conference on Learning Representations, 2019.

[10] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu,
and L. Zhu, “Adversarial examples for graph data: Deep
insights into attack and defense,” in Proceedings of
the 28th International Joint Conference on Artificial
Intelligence, 2019, pp. 4816–4823.

[11] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and
E. E. Papalexakis, “All you need is low (rank) defending
against adversarial attacks on graphs,” in Proceedings of
the 13th International Conference on Web Search and
Data Mining, 2020, pp. 169–177.

[12] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J.
Tang, “Graph structure learning for robust graph neural
networks,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 66–74.

[13] B. Runwal and S. Kumar, “Robustifying GNN via
weighted laplacian,” in IEEE International Conference
on Signal Processing and Communications, 2022, pp. 1–
5.

[14] X. Liu, W. Jin, Y. Ma, et al., “Elastic graph neural
networks,” in International Conference on Machine
Learning, PMLR, 2021, pp. 6837–6849.

[15] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling
networks: Interpretable neural networks for graph signal
denoising,” IEEE Transactions on Signal Processing,
vol. 69, pp. 3699–3713, 2021.

[16] Z. Zhang, S. Lu, Z. Huang, and Z. Zhao, “ASGNN:
Graph neural networks with adaptive structure,” arXiv
preprint arXiv:2210.01002, 2022.

[17] S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. P.
Palomar, “A unified framework for structured graph
learning via spectral constraints.,” J. Mach. Learn. Res.,
vol. 21, no. 22, pp. 1–60, 2020.

[18] K. Zhou, H. Zha, and L. Song, “Learning social infectiv-
ity in sparse low-rank networks using multi-dimensional
hawkes processes,” in Artificial Intelligence and Statis-
tics, PMLR, 2013, pp. 641–649.

[19] D. P. Bertsekas, Nonlinear programming, 1999.
[20] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-

minimization algorithms in signal processing, commu-
nications, and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 3, pp. 794–816, 2016.

[21] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified
convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM Journal on
Optimization, vol. 23, no. 2, pp. 1126–1153, 2013.

[22] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
and T. Eliassi-Rad, “Collective classification in network
data,” AI Magazine, vol. 29, no. 3, pp. 93–93, 2008.

[23] Y. Li, W. Jin, H. Xu, and J. Tang, “Deeprobust: A
pytorch library for adversarial attacks and defenses,”
arXiv preprint arXiv:2005.06149, 2020.

5

