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Abstract—Classifying the severity of speech impairment due to
dysarthria is crucial for optimizing care and enhancing commu-
nication abilities for affected individuals. This study explores the
use of the Modified Group Delay Function (MGDF) of LP residual
signal in classifying dysarthria severity-levels. Evaluations were
conducted using standard UA-Speech and TORGO datasets. A
stratified Convolutional Neural Network (CNN) with 5-fold cross-
validation validated the results. Baseline features included Linear
Frequency Cepstral Coefficients (LFCC), Mel Frequency Cepstral
Coefficients (MFCC), and Whisper module. Key performance
evaluation metrics were accuracy, precision, recall, and F1-score.
Finally, the latency period was analyzed for practical deployment
of the system, system’s ability to accurately recognize and process
speech from any speaker, without needing to be specifically
trained or adapted to individual voice characteristics.
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I. INTRODUCTION

Dysarthria is a motor speech disorder characterized by
impaired movement of the muscles used for speech, result-
ing in slurred, slow, or difficult-to-understand speech. This
condition presents significant challenges in clinical assess-
ment and management due to its heterogeneous nature and
varying dysarthric severity-levels. Accurate classification of
dysarthria severity is essential for guiding treatment planning
and monitoring disease progression. Traditional methods of
severity classification, often relying on subjective analysis, are
expensive and time-consuming, highlighting the need for more
efficient and objective approaches [1].

Early approaches in dysarthria classification utilized acous-
tic features derived from fundamental or pitch frequency (Fo),
formant frequencies, and duration measures [2]. However,
these traditional features often lack the sensitivity and speci-
ficity required for precise severity-level classification, particu-
larly in subtle or nuanced speech impairments. Researchers
have found cepstral-based features, such as Mel Frequency
Cepstral Coefficients (MFCC), [3] effective for classifying
dysarthria severity due to their ability to capture the vocal
tract system characteristics. Studies have shown that combin-
ing MFCC with auditory features yields better classification
results.

This study proposes the use of Modified Group Delay
Cepstral Coefficients (MGDCC) for dysarthric severity-level
classification [4], leveraging the phase information of lin-
ear prediction (LP) residual to capture the characteristics of

dysarthric speech. By integrating features, such as MFCC,
Linear Frequency Cepstral Coefficients (LFCC), and Lin-
ear Frequency Residual Cepstral Coefficients (LFRCC) with
MGDCC, [5] the proposed approach aims to enhance the
reliability and accuracy of automated dysarthria severity-level
classification systems.

The organization of the rest of the paper is as follows as:
Section II presents details of proposed phase-based features
from LP residual. Section III gives details of experimental
setup used for this study. Section IV presents experimental
results evaluating the proposed features with various perfor-
mance evaluation factors. Finally, Section V concludes the
paper along with potential future research directions.

II. PROPOSED METHODOLOGY

A. LP Residual

Speech signal is a one-dimensional signal carrying informa-
tion in the form of dependencies in the sequence of samplesof
speech signal and thus, a single speech sample has no percep-
utal significance. Hence, LP analysis models speech signals as
the result of a linear combination of past samples, aiming to
predict the current speech sample. The residual represents the
difference between the actual signal and the predicted signal.
This residual signal contains information about the components
of the speech signal that are not well-predicted by the LP
model, typically capturing aspects, such as aspiration noise in
consonants, glottal pulses in voiced speech, and other high
frequency components [6] . In particular,

ŝ(n) = −
p∑

k=1

aks(n− k). (1)

The parameter p, which denotes the filter order, significantly
influences performance in speech recognition tasks, with opti-
mal results achieved using LP order 10. Residual error plays
a crucial role in validating and debugging LP models, guiding
iterative optimization algorithms, and refining solutions to
improve their quality. By analyzing residual errors, one can
identify and correct issues within the model, ensuring more
accurate and reliable outcomes. It is given by:

r(n) = s(n)− ŝ(n) (2)



LP residual is a versatile tool in speech signal processing,
valued for its ability to capture prediction errors and excitation
source details that contribute to the accurate representation and
analysis of speech signals in various applications.

Fig. 1: Functional block diagram of LP residual and MGDCC
feature for the dysarthric severity-level classification system.

Fig. 2: (a) depicts original signal and (b) depicts MGDCC(lp)
of that signal

B. Modified Group Delay Function

Speech signals are complex, characterized by fundamental
components, such as frequency, amplitude, and spectral enve-
lope. The vocal tract system, which is generally a maximum
phase system, plays a crucial role in shaping these signals
by influencing acoustic resonances, known as formants, which
are essential for distinguishing vowels and certain consonants
[7]. The glottal excitation source, with its nonlinear vibration,
contrasts with the vocal tract’s minimum phase behavior. Ana-
lyzing phase provides insights into the temporal coherence and
stability of speech components, aiding in tasks, such as speech
synthesis, enhancement, and recognition [8]. Identifying res-
onance frequencies or formant frequencies from the phase
spectrum presents a challenge because they become obscured
by the phase wrapping phenomenon occurring at multiples of
2π. To overcome this signal processing conflict, the signal
must be a minimum phase signal, where the continuous (i.e.,
unwrapped) phase function is denoted by θ(ejω). Minimum
phase signals are preferred because their magnitude spectrum
and group delay spectrum exhibit similar α characteristics. The
group delay function derived as the negative derivative of the

unwrapped Fourier transform phase, serves as a measure to
quantify this coherence. The group delay function is given
as,[8]

T (ejω) = −dθ(ejω)

dω
. (3)

The group delay function is specifically applicable to minimum
phase signals. However, speech signals are generally mixed-
phase systems that contain zeros introduced by noise or nasal
sounds. To address these undesirable or spurious spikes, the
Modified Group Delay Function (MODGF) is introduced,
which effectively mitigates the influence of these zeros near the
unit circle in the group delay spectrum of speech signals. The
Modified Group Delay Function (MODGF) effectively moves
the zeros radially inside the unit circle, thereby reducing the
occurrence of spikes in the valleys. Additionally, a cepstrally-
smoothed signal is introduced to restore the dynamic range and
mitigate the spiky structure of the phase-based features.The
modified group delay function is given as:

Tm(ω) =
T (ω)

|T (ω)|
[T (ω)]a, (4)

where T (ω) is given by,

T (ω) =
GR(ω)HR(ω) +GI(ω)HI(ω)

|S(ω)|2γ
, (5)

where S(ω) represents the cepstrally-smoothed version of
G(ω), and GR, GI , HR, and HI indicate the real and
imaginary parts, respectively. Two parameters α and γ are
introduced , which are used to restore the dynamic range and
reduce the amplitude of the unwanted spikes, respectively. The
range of α and γ range between 0 < α ≤ 1 and 0 < γ ≤ 1.

III. EXPERIMENTAL SETUP

A. Dataset Used

This study utilizes two well-known dysarthria speech
corpora, namely, the Universal Access Dysarthria
Speech Corpus (UA-Speech) and TORGO. Both corpora
predominantly exhibit spastic dysarthria, characterized by
features, such as breathiness, hypernasality, a harsh voice, and
incorrect articulation, which lead to unintelligible speech [9].
The UA-Speech corpus is segmented into four severity-levels:
930 samples of very low severity, 926 samples of low severity,
930 samples of medium severity, and 751 samples of high
severity. It includes 8 speakers: 4 males (M01, M05, M07, and
M09) and 4 females (F02, F03, F04, and F05). The TORGO
corpus comprises a total of 1982 samples distributed across
three severity-levels: 671 samples of very low severity, 627
samples of low severity, and 684 samples of medium severity
[10]. In both corpora, 80% of the data is allocated for training
purposes, while the remaining 20% is reserved for testing.
The division ensures that both training and testing sets include
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words, non-words, and sentences. The experiments employ
a 5 cross-validation (CV) approach, focusing on evaluating
model performance exclusively on the training data to assess
its robustness and speaker-independence.

B. Classifier Used

The research employed a Convolutional Neural Network
(CNN) classifier due to its inherent translation invariance,
essential for recognizing features irrespective of their spatial
location. Moreover, CNNs efficiently capture spectro-temporal
patterns and variations in speech signals, making them ideal
for robust and accurate classification in such audio processing
tasks. The model was trained using a stratified 5 cross-
validation approach with a set seed value to ensure consistent
data distribution across folds. Each fold involved an 80%
training set and a 20% validation set. The adam optimizer was
employed with categorical cross-entropy as the loss function
and accuracy as the evaluation metric. A grid search was
performed to optimize the learning rate and batch size over
100 epochs, ensuring that the model’s parameters were fine-
tuned for peak performance. Two activation functions were
utilized: ReLU and softmax. ReLU enhances learning speed
and reduces computational cost, applied throughout except at
the final layer, where softmax aids multi-class classification.
Each convolutional layer incorporated normalization and
dropout layers to curb overfitting. Fine-tuning parameters
yielded a learning rate of 0.001, batch size of 128, and 100
epochs.

C. Baseline Features

The baseline for this work includes features, such as
MFCC, LFCC, LFRCC, and WSPSR (Web- scale Supervised
Pretraining). Additionally, the Whisper Tiny model, is
used as a baseline for the task of dysarthria severity-level
classification. This Tiny model is the smallest variant,
featuring relatively a fewer trainable parameters and layers
compared to its counterparts. For both datasets, LFCC features
outperform MFCC features, highlighting the effectiveness
of the linear frequency scale for classifying dysarthria severity.

IV. EXPERIMENTAL RESULTS

This Section evaluate the proposed LP residual MGDCC
feature set for various experimental evaluation factors, such
as the parameter tuning, spectrographic analysis, comparision
of baseline features and analysis of latency period.

A. Spectrographic Analysis

The spectrograms collectively illustrate varying degrees of
spectral complexity via pattern of spectral energy distribution.
Exhibit predominantly low-frequency content with a minimal
variation, while the others display a richer spectrum with mul-
tiple frequency components. In particular, reveals a wide band

of frequencies, indicative of a potentially noisy or intricate
signal.

Fig. 3: Plots for dysarthric speech ”to” from UA-Speech:Fig.
3(a), Fig. 3(b), Fig. 3(c), Fig. 3(d), of each section depicts
the time-domain waveform, Mel Spectrogram, residual spec-
trogram, and modified group dealy gram, respectively.

B. Parameter Tuning

As discussed in Eq. (4) and Eq. (5), MGDCC consists of
two parameters, namely, α and γ that are fine-tuned using
a greedy search algorithm and are varied within the range
[0.1,1] with a step size of 0.1. The evaluation is performed
using a CNN classifier, and a 5-fold cross-validation accuracy
metric. MGDCC features that are tuned for α = 0.1 and γ
= 0.1 results in relatively optimum performance for both
UA-Speech and TORGO with fold (test) accuracies of 94.63%
(93.45%), and 94.63% (93.37%), respectively, indicating α
and γ are the generalized parameters for the dysarthria
severity-level classification task w.r.t Eq. (4) and Eq. (5).

C. Comparison with Baseline Features

Table 1 shows the relative comparision of LFRCC feature set
along with baseline features, such as MFCC, LFCC, and state-
of-the-art whisper model-based features using CNN classifier.

For both the datasets, LFCC outperforms MFCC features,
indicate effectiveness of linear frequency scale for the task of
dysarthria severity-level classification. LFRCC outperforms
both MFCC and LFCC baseline features by a fold (test)
accuracy margin of 4.72% (4.23%), 0.51% (1.98%) for
UA-Speech, and 5.72%(2.81%), 5.58% (2.38%) for TORGO.
Furthermore, state-of-the-art web-scale supervised pre-training
for speech recognition (WSPSR), also known as Whisper
encoder module is used as a baseline for dysarthria severity-
level classification task. The proposed LFRCC features
perform on par for UA-Speech and outperforms by fold (test)
accuracy of 0.46% (0.2%) for TORGO, when compared with
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TABLE I: Fold (test) Accuracy, Precision (P), Recall (R) for Various Feature Sets
using CNN classifier on UA-Speech and TORGO

Data Features Fold Acc. Test Acc. Precision Recall
MFCC 87.29 90.68 91.52 90.21
LFCC 91.50 92.93 93.61 92.41

Whisper 92.01 94.80 93.28 92.44
LFRCC 92.01 94.91 95.06 94.85UA-Speech

Proposed Features
MGDCC (LP) 93.07 94.63 94.35 94.65

MFCC 85.71 88.62 89.40 88.64
LFCC 90.58 91.82 91.51 91.02

Whisper 90.97 94.10 93.47 94.00
LFRCC 91.43 94.20 93.96 94.19TORGO

Proposed Features

MGDCC (LP)
94.95 93.45 94.16 93.51

whisper model, which is an advance machine learning model
trained using labelled data of 680,000 hours. Table I indicate
the classwise precision, recall, and F1-Score of LFRCC with
p = 10 for UA-Speech and TORGO database. We notice
the balanced Fl-score across all the severity-levels reflects
the model’s robustness and consistency in classification
performance.

D. Analysis of Latency Period

Analyzing the latency period helps us to identify the min-
imum number of speech frames, i.e, minimal speech dura-
tion required to achieve optimal classification accuracy. By
understanding the relationship between the number of frames
and the accuracy, we can fine-tune our models to be both
efficient and effective, ensuring that we do not process more
data than needed while still maintaining high accuracy in
our speech classification tasks. Fig.3 the performance metrics

Fig. 4: Latency Period Analysis for different frames of UA-
Speech

(fold accuracy, accuracy, precision,recall, and F1 score) against
different latency periods (50,100, 200, 300, 400, 500, 1000,
1500, 2000ms). Observing the output plot allows one to see
how these performance metrics change as latency increases,

reflects how responsive the proposed features are. Typically, it
can highlight the trade-offs between quicker decision-making
(lower latency) and the performance of the model.

V. SUMMARY AND CONCLUSIONS

The study suggested utilizing LP residual-based MGDCC
features to classify dysarthria severity-levels, using two es-
tablished dysarthria speech corpora, namely, UA-Speech and
TORGO. Through various experiments, we discovered impor-
tant insights demonstrating the effectiveness of MGDCC fea-
tures for classifying dysarthric severity. Incorporating phase-
based features into a modified group delay function for
dysarthric speech involves enhancing the analysis of speech
signals by integrating phase information to improve recog-
nition and intelligibility. The group delay function, which
typically analyzes phase variations with frequency, is adjusted
to better capture the unique spectral and phase distortions
present in dysarthric speech.

A comparative analysis with baseline features, such as
MFCC and MGDCC, revealed that LFCC features are superior
for classifying dysarthria severity-levels. These findings were
especially noteworthy because LFCC features exhibited per-
formance at par with the advanced Whisper model features,
highlighting their effectiveness in capturing dysarthria-specific
characteristics.

Further analysis of the latency period illustrates how varying
latency periods (50 ms to 2000 ms) affect performance metrics
like accuracy, precision, recall, and F1 score. Shorter latencies
may speed up decision-making but could reduce accuracy,
while longer latencies often improve accuracy at the cost of in-
creased processing time. The plot helps balance decision speed
with model performance to find an optimal latency period.
The computational cost typically increases with more complex
features and shorter latency periods. Systems optimized for
real-time, low-latency operations must often invest in better
resources, while those with higher latency tolerance can reduce
costs by using more relaxed processing strategies.

One limitation of this work is the lack of direct comparison
with current state-of-the-art deep learning techniques. This
limitation is acknowledged due to constraints such as resource
availability or differences in the scope and application of
the study. While the primary focus has been on developing
and validating a novel approach, future work should include
comprehensive benchmarking against leading deep learning
methods to more thoroughly assess the relative performance
and generalizability of the proposed solution. Despite this,
the results presented offer significant value, particularly in
specialized scenarios where the state-of-the-art may not be
directly applicable.
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