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Abstract—This study explores feature extraction and machine
learning methods for automated sleep stage classification using
physiological signals, focusing on PPG-derived parameters and
skin temperature. We experimented with feature extraction
techniques that required different engineering steps, i.e., with
or without applying the first derivative and deviation from the
mean of raw signals. The statistical values, including mean,
standard deviation, maximum, minimum, and median of each
30-second segment of signals, are then extracted and used as
input features for our selected classification model, the Extra
Trees. The classification performance is evaluated under both
subject-dependent and subject-independent scenarios using data
from 93 subjects. The data include labeled stages of wake,
non-rapid eye movement (NREM) sleep stages N1, N2, and
N3, as well as rapid eye movement (REM) sleep. Optimal
features were derived from skin temperature measurement along
with the normalized timestamp, which is associated with sleep
duration. Results show that the subject-dependent experiment
yields the highest performance with an accuracy of 0.87 for
three-stage classification (wake, NREM:N1/N2/N3, REM) and
0.77 for five-stage classification (wake, N1, N2, N3, REM). This
work highlights the potential of artificial intelligence to enable
the automatic labeling of sleep stages using non-constrained
sensors. The important features related to sleep staging can be
investigated, which could contribute to future advances in clinical
diagnostics and healthcare applications.

I. INTRODUCTION

Sleep is vital for health and well-being. It helps the body
recover, enhances brain function, and maintains emotional
stability. Good sleep is crucial for memory, a strong immune
system, and proper metabolism. Not getting enough sleep or
having poor-quality sleep can lead to health conditions, such
as heart disease, diabetes, and cognitive difficulties [1]. Sleep
staging is the process of categorizing different phases of sleep.
It is crucial for understanding sleep patterns, diagnosing sleep
disorders, and developing effective treatment strategies. The
gold standard for sleep staging is Polysomnography (PSG), a
recording of the bio-physiological changes that occur during

sleep [2]. PSG involves the use of electroencephalogram
(EEG), electrooculogram (EOG), and electromyogram (EMG)
signals to monitor brain activity [3]. These signals are essential
for distinguishing sleep stages [4]. However, PSG is complex
and requires a high level of technical expertise to interpret. Ac-
cording to its complexity and the need for technical expertise to
interpret, a study by the American Academy of Sleep Medicine
(AASM) found that the sleep staging agreement among 2500
scorers using PSG is around 83% efficient [5]. Another study
examined the overall agreement for sleep staging between
seven scorers, finding 82% agreement rate [6]. Both studies
found the highest agreement on REM sleep, while the lowest
was on N1 sleep. The procedure is typically conducted in
a clinical setting with many sensors and electrodes, which
can be uncomfortable for the patient. There is a growing
interest in finding less invasive and more accessible methods
for sleep staging [7]. Recent research has shown that skin body
temperature holds the potential for sleep staging. Biologically,
skin temperature is affected by the thermoregulatory processes,
which vary during different sleep stages [8]–[10]. For instance,
skin temperature tends to increase during the transition to
sleep and remains relatively higher during REM sleep [11].
However, there is a lack of quantitative studies exploring the
direct use of skin temperature for sleep staging. In addition,
the use of photoplethysmography (PPG) on sleep staging can
be used to detect sleep and wake stages. This detection relied
on the combined features between heart rate variability (HRV)
and ECG-derived respiration (EDR) signals, measured from
wearable sensors [12]. To the best of our knowledge, no studies
investigate the combination of skin temperature and PPG-
derived parameters as analyzing features for sleep staging.

Advancements in machine learning (ML) and deep learning
(DL), combined with the biological signals from PSG, have
opened new techniques for sleep staging. This approach could
be applied to offer more efficiency in the aspect of manpower



compared to the traditional techniques [13]. In the context of
sleep staging, the ML technique can process signals from PSG
devices to classify different sleep stages. As a subset of ML,
DL takes this a step further by using neural networks with
multiple layers to model complex and non-linear relationships
in the data. Convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs) have been particularly effective
in handling time-series data and recognizing intricate pat-
terns associated with sleep stages. Many studies have adopted
CNNs and RNNs for sleep staging with signals retrieved from
PSG. Li. F. et al. developed an end-to-end automatic sleep
staging method by proposing the stacking model architecture
with a collection of consecutive convolutional micro-networks
(CCNs) and squeeze-excitation (SE) block [14]. The proposed
architecture was applied to use different single-channel EEGs.
Research has constructed sleep staging models based on the
random forest algorithm to distinguish four sleep stages based
on core body temperature rhythm, achieving accuracies of
0.70 for males and 0.77 for females [15]. PPG signals,
measured by finger pulse oximeters in a high prevalence of
obstructive sleep apnea (OSA) patients, were employed with
combined CNNs and RNNs to classify sleep stages into three
(wake/NREM/REM), four (wake/N1+N2/N3/REM), and five
(wake/N1/N2/N3/REM). The performance results showed that
the three-stage model achieved 80.1% accuracy, while the
four- and five-stage models achieved accuracies of 68.5% and
64.1%, respectively [16].

In this study, skin temperature and a set of parameters
derived from PPG sensors are used to classify sleep stages.
The statistical features, including the mean and standard devi-
ation of these signals, are utilized as inputs for classical ML
approaches. Additionally, the first derivatives of each prepared
signal are included to capture the rate of change and further
enhance the model’s ability to detect complex variations in the
data. Various experimental scenarios are explored, including
different numbers of sleep stage labels, subject dependency,
and groups of features. This comprehensive approach aims to
understand the effectiveness and robustness of the proposed
methods in classifying sleep stages. By using easy-access tools,
it offers a more accessible and less complex alternative to tradi-
tional PSG-based techniques, making sleep stage classification
more feasible for a broader range of users and applications.

The subsequent sections of this paper are organized as fol-
lows. Section II describes the methodologies employed in this
study, including an overview of the dataset, data preparation
techniques, and classification experiments. In section III, the
results and discussion regarding the classification performance
of each experimental scenario are presented. Finally, section
IV provides a summary of the study and explores potential
directions for future research.

II. METHOD

A. Dataset

This work utilizes a public dataset acquired from 100 unique
participants by the Duke University Health System Sleep

Fig. 1. Signal profiles of skin temperature, blood volume pulse, heart rate,
and interbeat interval.

Disorder Lab [17], [18]. This sleep study aimed to detect and
monitor apnea events during sleep using the PSG gold-standard
approach to sleep testing. PSG data collection began around 11
PM and continued until the participant naturally awoke around
6 AM, resulting in a 7-hour sleep test on each participant.
In addition to PSG components, the Empatica E4 wristband
(Empatica Inc., Milano, Italy) was placed on the left wrist
of each participant and was deactivated upon awakening. The
E4 device collected six raw signals, including blood volume
pulse (BVP) from the PPG sensor, accelerometry in three
axes, electrodermal activity (EDA), and skin temperature. In
the dataset, heart rate (HR) and interbeat interval (IBI) were
derived from the BVP. Additionally, technician-annotated sleep
stages derived from the PSG data were recorded every 30
seconds. All data were resampled to a frequency of 64 Hz
and synchronized using timestamps, which were time-shifted
to start from zero. An example of raw signals used in this study,
including skin temperature, BVP, HR, and IBI, is presented in
Fig. 1.

B. Feature Extraction

In this study, a total of 93 subjects were selected from the
initial 100 subjects of the dataset. The 7 subjects were excluded
from the analysis due to either having more than one sleep
stage within certain 30-second intervals or having labels indi-
cating a “preparing stage” (the stage before the PSG recording
starts) between the five sleep stages. The preprocessing and



feature extraction steps involved the following:
1) Feature Signals: The feature signals used in this work

include derived signals from a PPG sensor, specifically
heart rate (HR), blood volume pulse (BVP), interbeat
interval (IBI), and skin temperature.

2) Resampling: All signals were resampled from a 64 Hz
sampling frequency to 1 Hz.

3) Feature Engineering - Derivative Set: The first deriva-
tive was applied to all resampled signals to create the
derivative set. For a given signal x, the first derivative
∆xi is calculated as:

∆xi = xi − xi−1, (1)

Note that the first sample’s derivative is initialized to
zero: ∆x1 = 0. For the last sample, the derivative is
computed as the difference between the last two samples
to maintain consistency: ∆xn = xn − xn−1.

4) Feature Engineering - Deviation Set: The resampled
signals were subtracted from their mean values to gener-
ate the deviation set. For a given signal x with n samples,
the mean µx is calculated as:

µx =
1

n

n∑
i=1

xi (2)

The deviation of each sample is then calculated as:

di = xi − µx (3)

5) Segmentation: Both the derivative set and deviation
set were segmented into 30-second epochs, with each
segment labeled according to the corresponding sleep
stage.

6) Final Dataset Creation: Each segment (or chunk) was
processed to compute the mean and standard deviation
for both the derivative set and the deviation set. These
computed features formed the final dataset used for the
classification task in sleep staging.

C. Classification Experiments
The classification experiment investigates various scenarios

by varying factors involved in the training and evaluation of
sleep staging classification. The parameters include:

1) Number of stages: The original dataset includes signals
along with labels for five sleep stages: Wake (W),
Non-Rapid Eye Movement (N1/N2/N3), and Rapid Eye
Movement (R). This study examines three different clas-
sification schemes:

• Three stages: Wake, combined N1/N2/N3, and REM
• Four stages: Wake, combined N1/N2, N3, and REM
• Five stages: Wake, N1, N2, N3, and REM

2) Dependency:
• Subject-independence: Ensuring that subjects in the

training and test sets are separate, with 74 subjects
in the training set and 19 subjects in the test set. All
experiments under subject-independent conditions
will be evaluated using the same test set.

• Subject-dependence: Splitting the data by a 70:30
ratio for training and testing, respectively. The split-
ting is performed by grouping ID and sleep stages,
ensuring that all stages from each ID are split with
the same ratio in both the training and test sets.

3) Classification: The classification training model is set up
using the PyCaret framework [19], which provides robust
data preprocessing steps. Since the imbalance in the
sleep stages labels within the dataset, PyCaret addresses
this issue by applying the SMOTE (Synthetic Minority
Over-Sampling TEchnique). Additionally, the framework
uses stratified K-fold cross-validation to ensure that all
stages from each ID are separated in the same ratio
in both the training and validation sets. In this work,
the Extra Trees (ET) algorithm is employed as the
classification algorithm with a 10-fold cross-validation.
The performance of the classification model is monitored
using several key metrics, including Accuracy, Recall,
Precision, and F1-score, applied to the test dataset to
compare the performance across different classification
experiment scenarios.

III. RESULTS AND DISCUSSION

A. Data Exploration

Fig. 1 illustrates an example of measured signals from the
Empatica E4 wristband device. The skin temperature measure-
ments obtained from this device exhibit a pattern similar to
the distal temperature reported in the study of C. Cajochen
et al. [20]. This finding suggests that the distal-proximal
temperature relationship should be considered when evaluating
the performance of the easy-access tool used in this study.

Fig. 2. Number of each sleep stage on the train (left) and test (right) datasets,
split by subject-independent scenarios.

Fig. 2 illustrates the significant imbalance in the distribution
of labels across the 74 subjects and 19 subjects in training and
test sets, respectively, from the subject-independent strategy.
The majority of the samples belong to the N2 and Wake stages,
while the N3 stage has the fewest samples. This distribution
could be influenced by the first night effect (FNE), which
increases time in the light sleep stages and decreases time
in deep sleep stages [21]. FNE also increases the transition
probability from stage N2 to N1 and decreases the transition
probability from stage N2 to N3 [22]. Additionally, patients
with obstructive sleep apnea (OSA) who have short sleep times



probably experience a decrease in the N3 deep sleep stage and
REM stage, along with an increase in N1/N2-stage time due
to fragmented sleep architecture [23], [24].

B. Classification Performance

This subsection discusses the performance of each exper-
imental scenario. The parameters include groups of features,
including PPG-derived signals, skin temperature, and a combi-
nation of both. Additionally, the number of sleep stages used as
labels are varied for three-, four-, and five-stages. The details of
the subject-dependent and independent scenarios are described
as follows:

In the result of subject-independence in Table I, the skin
temperature profile shows better performance than using PPG-
derived signals alone. However, the use of PPG-derived signals
in this study yields lower performance than previous research
reported by H. Korkalainen et al [16]. This difference might
be due to the feature extraction methods in order to represent
raw signals.

TABLE I
CLASSIFICATION PERFORMANCE OF SUBJECT-INDEPENDENCE USING
STATISTICAL VALUES EXTRACTED FROM RAW SIGNALS, ALONG WITH

NORMALIZED TIMESTAMPS.

Features Stages Accuracy Recall Precision F1

PPG derived
3 0.37 0.37 0.62 0.39
4 0.39 0.39 0.53 0.41
5 0.29 0.29 0.45 0.31

Skin temperature
3 0.58 0.58 0.57 0.57
4 0.55 0.55 0.51 0.53
5 0.37 0.37 0.39 0.37

PPG-derived &
Skin temperature

3 0.42 0.42 0.61 0.45
4 0.42 0.42 0.52 0.44
5 0.29 0.29 0.42 0.30

The significant impact of imbalanced labels also affects
the ability to classify less occurred stages accurately. Models
may become biased towards the more frequent stages. This
imbalance obviously impacts classification performance, espe-
cially under the subject-independence. The performance gap
between the five-stage classification scenario and the three-
and four-stage scenarios is considerable. Separating into five
stages requires considering N2 separately from N1 and N3.
Since N1 has a significantly lower sample compared to N1
and N2, this results in less support for test classification
performance. Consequently, the overall performance in the
five-stage classification scenario is lower.

The classification performance improved by 10-16% across
all experimental scenarios when using the statistical values of
deviation and the first derivative of the raw signal, compared
to using the statistical values of the raw signals, as described
in Table II.

Table III presents results for the 70:30 train-test split ratios,
respectively. The classification performance using skin tem-
perature alone is 87%, 85%, and 77% for three-, four-, and

TABLE II
CLASSIFICATION PERFORMANCE OF SUBJECT-INDEPENDENCE USING
STATISTICAL VALUES EXTRACTED FROM THE DEVIATION AND FIRST

DERIVATIVE OF RAW SIGNALS, ALONG WITH NORMALIZED TIMESTAMPS.

Features Stages Accuracy Recall Precision F1

PPG derived
3 0.53 0.53 0.63 0.56
4 0.52 0.52 0.57 0.54
5 0.41 0.41 0.46 0.43

Skin temperature
3 0.61 0.61 0.56 0.58
4 0.56 0.56 0.50 0.52
5 0.38 0.38 0.37 0.38

PPG-derived &
Skin temperature

3 0.55 0.55 0.62 0.57
4 0.52 0.52 0.55 0.53
5 0.40 0.40 0.45 0.41

five-stage classification, respectively. Combining both PPG-
derived and skin temperature features decreases a bit perfor-
mance by approximately 1%. across all experiment scenarios.
This suggests that including the statistical values of the skin
temperature profile as input features can enhance classification
performance.

Similar to subject-independent scenarios, the deviation and
the first derivative are computed for subject-dependent sce-
narios. However, as shown in Table IV, the classification
performance decreases when using either PPG-derived features
or skin temperature features alone. By incorporating a range
of known labels for the individuals’ sleep stages into the
training set, these models can be fine-tuned to enhance their
accuracy and reliability. This personalized approach highlights
the importance of subject-dependent data in improving sleep
stage classification performance.

TABLE III
CLASSIFICATION PERFORMANCE OF SUBJECT-DEPENDENCE USING

STATISTICAL VALUES EXTRACTED FROM RAW SIGNALS, ALONG WITH
NORMALIZED TIMESTAMPS.

Features Stages Accuracy Recall Precision F1

PPG derived
3 0.81 0.81 0.82 0.81
4 0.79 0.79 0.80 0.79
5 0.72 0.72 0.71 0.71

Skin temperature
3 0.87 0.87 0.87 0.87
4 0.85 0.85 0.85 0.85
5 0.77 0.77 0.77 0.77

PPG-derived &
Skin temperature

3 0.86 0.86 0.86 0.86
4 0.84 0.84 0.85 0.84
5 0.77 0.77 0.77 0.77

Fig. 3 illustrates the normalized confusion matrix of clas-
sification performance using statistical values from the skin
temperature profile. This confusion matrix shows the highest
performance for REM sleep and the lowest for N1 sleep,
aligning with the agreement of sleep staging by scorers [5],
[6]. N1 is often characterized as the transitional phase between
wakefulness and deeper sleep stages. During this stage, phys-



TABLE IV
CLASSIFICATION PERFORMANCE OF SUBJECT-DEPENDENCE USING

STATISTICAL VALUES EXTRACTED FROM THE DEVIATION AND FIRST
DERIVATIVE OF RAW SIGNALS, ALONG WITH NORMALIZED TIMESTAMPS.

Features Stages Accuracy Recall Precision F1

PPG derived
3 0.76 0.76 0.77 0.76
4 0.73 0.73 0.75 0.74
5 0.66 0.66 0.66 0.66

Skin temperature
3 0.85 0.85 0.84 0.84
4 0.83 0.83 0.83 0.83
5 0.75 0.75 0.75 0.75

PPG-derived &
Skin temperature

3 0.80 0.80 0.80 0.80
4 0.79 0.79 0.79 0.79
5 0.71 0.71 0.70 0.70

Fig. 3. Confusion matrix for 5 stages classification in subject-dependence,
using skin temperature and normalized timestamps.

iological signals, i.e., skin temperature and heart rate, may
not differ significantly from neighboring stages, leading the
model to misclassify N1 as wake and N2, as presented in
Fig. 3. Moreover, it can be seen that the staging performance
using skin temperature-related features is better than that of
using PPG-derived features. Medical studies have shown that
skin temperature, especially near the wrist, increases at the
sleep onset and changes predictably during different sleep
stages. The distinction between distal and proximal tempera-
ture measurements is essential in the context of sleep staging.
Distal temperature, measured at locations such as the wrist or
ankle over the radial artery [25], can be easily captured using
wearable devices.

In this work, the distal skin temperature was also measured
using the Empatica E4 wristband device. Understanding the
influence of distal temperature on sleep stages is important.
During the transition to sleep and throughout NREM sleep,
there is an increase in distal skin temperature. This increase
is associated with vasodilation, promoting heat loss and helps
lower the core body temperature [26]. In fact, distal tempera-
ture continues to increase during the N3 deep sleep stage [11].

Additionally, a warm pre-sleep environment before going to
bed, known as the “Warm Bath Effect”, increases NREM and
decreases REM sleep [26]. Furthermore, environmental factors
such as ambient temperature should be considered in the
development of home-use measurement tools. Higher ambient
temperature leads to increased skin temperature, potentially
affecting the detection accuracy of sleep stages.

C. Effects of Skin Temperature and Sleep Duration on Sleep
Stage Classification

The study on sleep stage classification explores the impact
of incorporating normalized timestamps into the feature set.
The results, as shown in Section III-B, demonstrate that taking
into account the normalized timestamps significantly improves
performance in subject-dependent scenarios. This improvement
is evident when using either PPG-derived features or skin
temperature features alone. However, the improvement is ob-
viously presented with skin temperature features, achieving
performance increase in the range of 19-23% depending on
the number of sleep stage labels. These findings highlight the
importance of temporal information in enhancing the accuracy
of machine learning-based sleep staging classification. This
suggests the possibility of developing personalized AI models
for healthcare, particularly for sleep stage classification tasks.

IV. CONCLUSIONS AND FUTURE WORK

This work demonstrates that simple physiological parame-
ters acquired from the wearable device, including PPG-derived
parameters and skin temperature, can be effective for automatic
sleep staging classification. The key process is feature extrac-
tion and engineering to select the suitable set of feature inputs
to train the machine learning model. Our experimental design
covers both subject-dependent and independent scenarios for
the train-test splitting of the classification model with available
sleep stage labels of 93 individual subjects. It was found
that the information on skin temperature and sleep duration
(i.e., normalized timestamps) led to a highly accurate model.
The extra Tree model achieves up to 0.87 in accuracy in
the subject-dependent scenario when labeling wake, NREM
(N1/N2/N3), and REM. Our proposed model shows agreement
with the sleep stage labels by human expert scorers both in
terms of the overall classification performance and the bias
in labeling stages arising from the ambiguity between staging
behavior. The findings can pave the way for artificial intelligent
solutions to analyze data from simple, non-constrained sensors
to automate sleep stage labeling, which can be useful and
practical for the healthcare industry. Environmental factors
such as ambient temperature and light intensity can be taken
into account in future research. An appropriate experimental
design to collect primary data is necessary to improve scoring
performance, reduce bias, and gain more impactful insights
related to the sleep stage patterns of individuals.
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