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Abstract—We introduce a novel approach to Acoustic Scene
Classification (ASC) using the Self-Supervised Audio Spectro-
gram Transformer (SSAST) sophisticated with a focus on layer-
wise fine-tuning. Recognizing the challenge in distinguishing simi-
lar classes in the TAU Urban Acoustic Scenes 2022 dataset, which
sometimes exceeds human perceptual capabilities, this study
introduces a novel architecture that categorizes environmental
audio streams into predefined semantic labels through integrating
multi-layer classifiers and direct fine-tuning. Employing the TAU
Urban Acoustic Scenes 2022 Mobile dataset for both fine-tuning
and validation, our SSAST model, which was initially pre-trained
on the AudioSet and LibriSpeech datasets, was uniquely fine-
tuned to enhance ASC-specific feature learning. Here, a combined
approach of layer-wise and simultaneous fine-tuning of the
backbone was introduced, eliminating the need for reassembling
the dataset. This method achieved satisfactory results, our layered
SSAST system reached an accuracy of 52.43% and an AUC of
88.51%, marking a notable improvement over the baseline with
absolute increases of 1.25% in accuracy and 0.70% in AUC.

I. INTRODUCTION

Acoustic Scene Classification (ASC) is to assign one of the
predefined semantic labels, such as bus, office, or home, to an
input audio stream recorded in various environments [1]—[3].
Generally, semantic labels stem from environmental sound
categorizations that describe the ambiance of audio streams.
An overview of a ASC system is shown in Fig. 1. For many
years, ASC has been an active area of research. This field
has made noteworthy advancements, notably in areas like the
Detection and Classification of Acoustic Scenes and Events.
Environmental audio signals, especially when compared to
speech or music, tend to be more diverse and complex, posing
unique challenges. As a result, ASC’s progress has been
somewhat slower than in other audio-related domains, such
as speaker identification and music classification. To tackle the
issue of low performance, researchers have introduced a variety
of strategies. These include signal processing techniques, data
augmentation, advanced feature learning, efficient deep learn-
ing modeling, and sophisticated post-processing approaches.

In this paper, we attempt to enhance accuracy without re-
training models from scratch. We introduce a novel architecture
that incorporates multi-layer classifiers and direct fine-tuning,
diverging from the previous models such as Patchout Spectro-
gram Transformer (PASST) [4] which often require extensive
reassembly of training data. As far as we know, the applica-
tion of the Self-Supervised Audio Spectrogram Transformer
(SSAST) model [5] to the TAU Urban Acoustic Scenes 2022
Mobile dataset [6] is not a mainstream approach and has not
been extensively studied within the DCASE community. This
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Fig. 1: Overview of an ASC system.

study aims to explore its potential and evaluate its performance
on this dataset. Our experiments demonstrate that our system
achieves an accuracy of 52.43%, surpassing other methods that
rely solely on direct fine-tuning. The TAU dataset is notori-
ously challenging, containing environmental sounds that even
humans struggle to differentiate. This innovative approach not
only addresses the challenges of applying pre-trained models
to ASC but also advances how these models can be fine-tuned
more effectively. One of the main observations in this study
is the difficulty in improving accuracies for distinguishing
similar categories. To tackle this issue, we have implemented
advanced feature extraction techniques designed specifically
to enhance differentiation among similar acoustic scenes. Our
method avoids concatenating audio data, instead training on
original recordings, which preserves the authenticity of the
audio contexts.

II. RELATED AND PROPOSED MODELS

This chapter describes the methodology employed in the
current study, focusing on the innovative use of the Self-



Supervised Audio Spectrogram Transformer (SSAST) as the
baseline model for acoustic scene classification (ASC). Tra-
ditionally, ASC tasks have predominantly employed models
such as the Patchout faSt Spectrogram Transformer (PaSST),
which optimizes transformer training on audio spectrograms to
achieve state-of-the-art performance with less computational
overhead [7]. Unlike PaSST, which still requires pre-training
on large labeled datasets and employs patch-based input strate-
gies akin to those used in vision tasks, the SSAST introduces
a novel approach by leveraging a self-supervised learning
framework to pre-train directly on raw, unlabeled audio data
[5].

Another significant strength of SSAST is its ability to
perform well without the need to reassemble audio snippets
into longer segments for training or evaluation. This capa-
bility underscores its robustness and effectiveness in real-
world applications, where manipulation of audio data is not
always feasible or desirable. The common practice in ASC
competitions, such as reassembling audio snippets into longer
segments for training [8], exemplified by the best models
in the DCASE challenges, poses significant theoretical and
practical challenges. This method may create discrepancies
between training and operational environments. In real-world
applications, audio data often arrive in non-continuous streams
without the opportunity for pre-segmentation or reassembly.
Training on artificially concatenated segments may lead to
models that perform well in a controlled setting but falter in
real-world scenarios where such preprocessing is not feasible.
This approach may affect the model’s generalization to diverse
acoustic environments.

A. Baseline: Self-Supervised Audio Spectrogram Transformer
(SSAST)

The Self-Supervised Audio Spectrogram Transformer
(SSAST) architecture [5], which is illustrated in Fig. 2 as a
self-supervised learning framework for Audio Scene Classifi-
cation (ASC), is built on the Audio Spectrogram Transformer
(AST) model [9]. The AST, which is based purely on self-
attention mechanisms as in the Vision Transformer (ViT)
[10], has demonstrated superior performance over traditional
deep learning models that used convolutional neural networks
(CNNgs) for a variety of tasks. SSAST begins by transforming
a 7-sec long audio segment into a series of 128-dimensional
log Mel filterbank (fbank) features. These features are derived
using a 25ms Hanning window at 10ms intervals, resulting in a
128 <1007 spectrogram. This spectrogram is then divided into
16x 16 patches, as shown in A of Fig. 2. And those patches are
subsequently flattened into 1D 768-dimensional embeddings
through a linear projection, known as the patch embedding
layer, producing patch embeddings E;. To account for the
Transformer architecture’s lack of understanding the temporal
order, a trainable positional embedding of size 768, denoted as
P;, is added to each patch embedding, facilitating the model’s
understanding of the 2D audio spectrogram’s spatial structure,
two embeddings are shown in B of Fig. 2. The sequence
of embeddings is then processed through the Transformer,
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Fig. 2: Block diagram of Self-Supervised Audio Spectrogram
Transformer (SSAST)

.

As shown in the C part of this figure, during self-supervised pretrain-
ing, a portion of spectrogram patches are randomly masked. And the
task for the model is to 1) find the correct patch at each masked
position from all masked patches; and 2) reconstruct the masked
patch. The two pretext tasks aim to force the AST model to learn both
the temporal and frequency structure of the audio data. During fine-
tuning, the purpose apply a mean pooling over all patch representation
O; and use a linear head for classification [5].

which is composed of multiple encoding layers and decoding
layers. In SSAST, however, only the encoding part of the
Transformer 1is utilized, which extracts an embedding feature
whose dimension is 768, with 12 layers and 12 heads. The
output from the Transformer encoder, referred to as the patch
representation O;, undergoes a mean pooling during fine-
tuning and inference to yield an audio clip level representation.
Subsequently, a linear head is applied for the classification
task.

B. Proposed: Normalization for Layer Wise Classifiers

The architecture of our layer-wise classifier is shown in
Fig 3 with three specific methods applied. The first method
emphasizes the importance of individual layer outputs by
normalizing each block’s output, denoted as Pre-Norm in
Fig 3a. The mean of the resultant vectors, excluding the class
token, is computed to derive layer-wise representations. These
are weighted by a softmax function with learned weights,
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Fig. 3: Block diagram of layer wise architecture.

allowing for differential emphasis on information from various
network depths. This weighted sum is input to a multi-layer
perceptron (MLP) head for classification. The equations for
this method are:

M; = Mean(Norm(0;)), ie{l,....,L} (1)

L

S = Z(Wz X Mi) (2)
=1

x = MLPHead(S), (3)

where M; is the output from the i layer after normalization
and mean calculation, O; is the output of the ith block, S is the
weighted sum of the outputs, W; are the softmax-normalized

weights, and L is the total number of layers.

The second method defers mean pooling until the weighted
sum of layers is calculated, denoted as Post-Norm in Fig 3b.
The layer outputs are aggregated using softmax-scaled weights
and then normalized before passing through the MLP head.
This is represented as:

M; = Mean(0;), ie{l,....L} &

L

S = (Wi x M) 5)
i=1

2 = MLPHead(Norm(55)), (6)

To expand on these two methods with a new variation,
we introduce a third approach that incorporates normalization
both before and after the aggregation of layer outputsdenoted
as Post-Norm in Fig 3b.. This method applies normalization
initially to each layer output before calculating the weighted
sum, and once again after the aggregation, ensuring a more
uniform scale and potentially enhancing the stability and
performance of the MLP head. Here’s how this new method
is formulated:

M; = Mean(Norm(0)), iel,....L (1)

L

S = Z(Wi x M;) )
=1

2 = MLPHead(Norm(S5)), ©)

In all methods, MLPHead denotes the MLP head, which
processes the normalized weighted sum and produces the
classification output z. The normalization step ensures that
the signal is suitable for classification, making the most of the
diverse features extracted from the audio signal.

III. EXPERIMENTAL SETUP

In our experimental setup, all evaluations were conducted
on the TAU Urban Acoustic Scenes 2022 Mobile dataset [6].
This dataset comprises 64 hours of audio recordings from 12
different European cities, featuring 10 unique acoustic scenes.
The audio was captured using four distinct devices, and each
audio sample has a length of 1 second, trimmed from the
original 10-second recordings. Out of the total audio data,
40 hours were recorded using the main device, while the
remaining hours were captured with the three additional, less
frequently used devices. The audio format for all devices is
single-channel, 44.1kHz, and 24-bit resolution.

In our experimental framework, we leveraged the SSAST
model, which features a novel approach integrating both dis-
criminative and generative learning paradigms through Masked
Spectrogram Patch Modeling (MSPM). This model was pre-
trained using a vast collection of unlabeled audio data sourced
from the AudioSet [11] and LibriSpeech datasets [12]. With
MSPM, the model masks a strategic subset of spectrogram
patches, specifically 400 patches, to challenge the model to
predict the missing acoustic information. This technique not
only encourages the model to learn a more comprehensive



representation of the audio but also to discern finer details that
are crucial for classification. Notably, the effectiveness of this
model has been validated by its impressive performance on
the ESC-50 dataset [13], a benchmark in environmental sound
classification. This is why the SSAST model is regarded as
suited foundation on the TAU Urban Acoustic Scenes 2022
Mobile dataset.

For our experiments, we employed a consistent set of
hyperparameters across all models to maintain uniformity
in the evaluation conditions. These parameters included the
learning rate, batch size, and data augmentation techniques,
along with the warm-up strategy, number of training epochs,
choice of optimizer, and loss function utilized during the
training process.

Various data augmentation strategies were explored during
experimentation. Mixup augmentation, implemented at the
waveform level using a Beta distribution for mixing weights,
was attempted but did not lead to significant improvement.
Feature-level augmentation was also investigated, specifically
by adding random noise to the log mel-filterbank features and
applying time-axis shifting, which resulted in a modest im-
provement. The most effective augmentation technique proved
to be the masking strategy inherent to SSAST’s self-supervised
learning framework, which applies both time and frequency
masking to the input spectrogram.

In addition to feature augmentation, a notable deviation from
the pre-training phase was the input handling; specifically, we
introduced overlapping inputs to enrich the model’s exposure
to the data. With these consistent parameters in place, we fo-
cused on the classifier component of our modified architecture.
Starting with randomly initialized weights for the classifier
while inheriting the backbone’s weights from pre-training, we
proceeded with fine-tuning the entire model without freezing
any layers. This approach was adopted due to the significant
differences between the TAU Urban Acoustic Scenes 2022
Mobile dataset and the AudioSet upon which the model was
originally trained. To ascertain the impact of our strategy, we
also conducted comparative experiments using models with
their backbone layers frozen during fine-tuning.

IV. RESULTS AND DISCUSSION

Before delving into the specifics of the experimental out-
comes, it’s essential to understand the metrics used to measure
the performance of the systems. Accuracy (Acc) is a metric
that represents the proportion of true results, both true positives
and true negatives, in the total number of cases examined.
It provides a straightforward measure of a model’s overall
correctness. On the other hand, the Area Under Curve (AUC)
is a performance measurement for classification problems at
various threshold settings. AUC represents the degree to which
the model is capable of distinguishing between classes. An
AUC of 1 indicates perfect prediction, while an AUC of
0.5 suggests no discriminative power, equivalent to random
guessing.

In this study, we only adopt Accuracy and AUC as per-
formance metrics because our TAU Urban Acoustic Scenes

TABLE I: Performance of our proposed layer-wised SSAST
and several comparing systems.

Model Acc(%) AUC(%)
Baseline 51.18 87.81
Frozen Backbone (post-norm) 30.27 73.11
Layer-wised (pre-norm) 49.58 87.06
Layer-wised (post-norm) 52.03 88.17
Layer-wised (double-norm) 5243 88.51

2022 Mobile dataset is a fully balanced dataset, where each
class contains an approximately equal number of samples. This
makes these two metrics highly appropriate, as they provide an
accurate reflection of the model’s performance without being
skewed by class imbalances.

The experimental results of layer-wised SSAST and several
comparing systems are summarized in Table I. The layer-wised
model with double-normalization SSAST outperforms the
baseline SSAST by absolute 1.25% Acc and absolute 0.70%
AUC. Our results support the hypothesis that by extracting
information from all layers and implementing comprehensive
fine-tuning, we can adapt pre-trained models to extremely chal-
lenging and divergent domain tasks effectively even with min-
imal efforts. Models with frozen backbones show a significant
divergence between the SSAST pretraining domain and the
DCASE ASC target domain, which training the classifier alone
cannot address. Furthermore, the results of the layer-wised
model with pre-normalization indicate that the importance
assigned to each layer’s output varies greatly. Normalizing
these outputs before weighting may actually diminish the
distinct information of different layer levels, resulting in lower
classification performance. Post-normalization, applied after
weighting the outputs, preserves the distinctiveness of features
from each layer. This method enhances the model’s ability
to leverage inter-layer discriminative features, potentially im-
proving the robustness and accuracy of the classification across
varied and complex scenarios.

We also plot the confusion matrices for 1) Baseline, 2)
Frozen Backbone with post-norm, and 3) three versions of
layer-wise architecture, depicted in Figure 4. Our findings
provide further validation of our initial premise. The confusion
matrix from models with a Frozen Backbone reveals that
the backbone itself is entirely unsuitable and incapable of
facilitating effective classification, as shown in Fig. 4a and
Fig. 4b. Moreover, when comparing the baseline with the
layer-wised with pre-norm approach, there are no significant
differences in classification outcomes for most categories, as
shown in Fig. 4c. And, for the post-norm approach, as shown in
Fig. 4d, there is a noticeable improvement at class G. However,
for the double-norm approach, as shown in Fig. 4e, there is
a noticeable improvement across those categories that with
low accuracy, such as class B and C. This suggests that the
overall architecture enables the model to extract features more
effectively and utilize multi-layer features more efficiently
for classification. Such an approach could enhance the fine-
tuning performance of both the backbone and the classifier
components of the model.
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Fig. 4: Confusion matrices of the ASC systems examined. The labels from A to J correspond to: A - Airport, B - Indoor shopping
mall, C - Metro station, D - Pedestrian street, E - Public square, F - Street with medium level of traffic, G - Travelling by a
tram, H - Travelling by a bus, I - Travelling by an underground metro, J - Urban park.

V. CONCLUSIONS

In this paper, we proposed a novel ASC system named
Layer wised SSAST. Based on our experiments and analysis,
it is evident that the layer-wise approach significantly aids pre-
trained models to be adapted for tasks where the data distribu-
tion undergoes severe changes and presents considerable chal-
lenges. This is particularly beneficial for extremely difficult
tasks and datasets within the ASC, where the approach shows
marked improvements in classifying similar categories. Our
system enhances discriminative capability in similar acoustic
scenes, improving performance in challenging ASC applica-
tions. This method achieved an accuracy of 52.43% and an
AUC of 88.51%, representing an absolute increase of 1.25%
in accuracy and an absolute increase of 0.70% in AUC.

This study enhances the adaptability of SSAST for ASC
tasks, particularly in handling similar class distinctions, pro-
viding a new strategy for future ASC systems to improve
classification performance in complex scenarios. The method
also demonstrates SSAST’s potential to better adapt to real-
world ASC tasks, paving the way for future research to further
expand its applications. Additionally, the research offers a
promising solution for deploying complex models on resource-

constrained devices, suggesting future work on low-complexity
models and knowledge distillation techniques for efficient ASC
implementations.

For the future works several promising directions for en-
hancing ASC systems using the Self-Supervised Audio Spec-
trogram Transformer (SSAST). Emphasizing low complex-
ity models is crucial for devices with limited computational
resources. Future studies should explore using SSAST for
knowledge distillation to train efficient student models and
leverage techniques like model compression, quantization, and
pruning to reduce complexity [14]-[17]. Additionally, evaluat-
ing SSAST on datasets beyond urban environments, including
rural, wilderness, and underwater soundscapes, could provide
insights into its adaptability and generalization. This research
is essential to understand the model’s performance across
different auditory environments [18]. Furthermore, enhancing
current classification schemes by addressing overlaps and
ambiguities in acoustic scene definitions could improve model
precision. A more granular taxonomy of acoustic environments
would ensure consistency and reliability across applications
[19]-[21].
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