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Abstract—In this study, we evaluate speech enhancement using
multi-channel blind source separation (BSS) and single-channel
DNN-based noise suppression in an in-car environment. Specif-
ically, blind source separation is applied to a mixture of target
speech and driving noise, and one of the outputs is fed into the
DNN. This combination allows for speaker position-independent
enhancement through blind source separation, while the single-
channel DNN can be trained regardless of the microphone
position. To further improve performance, we fine-tune the pre-
trained model using the BSS outputs, including driving noise. Our
evaluation criteria include signal-to-distortion ratio improvement
(SDRi) for noise reduction performance, and accuracy and
character error rate (CER) for speech recognition performance.
Results demonstrate that SDRi for the proposed method reached
28.37 dB. Additionally, the average speech recognition accuracy
improved from 0.785 to 0.826, and CER improved from 15.3%
to 11.9%. These findings demonstrate the potential of combining
BSS and DNN to enhance speech recognition capabilities in in-car
environments.

I. INTRODUCTION

Speech recognition technology has served as a vital interface
for various systems, enhancing safety and convenience. In
in-car environments, voice-based interfaces are particularly
crucial as they allow drivers to operate systems without
taking their hands off the steering wheel. Additionally, the
development of speech recognition systems for rear seats or
while reclined has gained attention owing to the difficulty
of physically reaching the controls [1]. However, the in-car
environment includes both stationary noises, such as engine
and wind noise, and nonstationary noises, such as sounds
from the car stereo and conversations among passengers. These
noise sources significantly degrade the effectiveness of speech
recognition technologies, making reliable noise reduction tech-
niques essential.

When a microphone array is available, beamforming [2] is
one of the valuable methods to enhance the speech coming
from a target direction. Some previous studies demonstrate this
technique [3]–[5]. However, although the driver’s position can
generally be assumed to remain static, the relative positions
of speakers in the rear seats to the microphones may vary
depending on the car type and seating arrangement. As a result,
reliance solely on prior information is not feasible, and source

direction estimation and steering vector estimation become
necessary.

In contrast, multichannel blind signal separation (BSS)
[6]–[8] works without prior information about the sound
sources, making it a flexible framework for noise and speech
separation. Thanks to an efficient update rule of parameters [9],
this approach requires less computation, and online real-time
applications have been developed [10]–[12]. Some previous
works show the effectiveness of BSS in car environments [13],
[14]. However, because it does not use prior information about
sound sources, it may not perform well in complex noisy in-car
environments.

Additionally, deep neural networks (DNNs) have been ap-
plied to single-channel or multichannel speech enhancement
[15]–[19]. Related works show the high separation perfor-
mance using DNNs in an in-car environment [20], [21].
Although most DNN-based source-separating processing is
nonlinear and unsuitable for speech recognition, they can
achieve higher noise reduction performance.

Motivated by these considerations, our focus in this study
is to improve speech recognition accuracy in car environments
by enhancing speech using microphone arrays. To achieve this,
we explore a method that combines multi-channel blind source
separation (BSS) and single-channel DNN-based speech en-
hancement. This approach enables enhancement that is inde-
pendent of the speaker’s position through blind source sepa-
ration, while the single-channel DNN can be trained without
regard to the microphone position. Additionally, by using BSS
as a frontend, we expect to potentially eliminate the influence
of multiple speakers and car stereo sounds, although this aspect
is not evaluated in this study. To achieve better performance,
we fine-tune the pre-trained model using paired data of BSS
outputs and clean speech. We used auxiliary-function-based
independent vector analysis (AuxIVA) [9] as the BSS method,
as it is a standard multichannel BSS method, and considering
future online evaluations [10], [11], [22], [23]. We also used
Conv-TasNet [24] as the DNN model. The experimental results
show the effectiveness of combining multi-channel BSS and
single-channel DNN with fine-tuning.



II. PROBLEM SETTINGS

Let N be the number of microphones. Let st ∈ CN and
nt ∈ CN be the multi-channel observation of clean target
speech signal and noise in the time domain, where t is the
index of the discrete time. The observed signal xt ∈ CN can
be represented as xt = st + nt.

The objective of this study is to recognize speech in an
in-car environment. Given that the speech recognition engine
used in this study is treated as a black box and no retraining of
the engine is considered, our aim is to enhance the speech as
much as possible at the frontend through speech enhancement,
that is, to estimate st from xt.

III. PROPOSED APPROACH

A. Combination of Multichannel BSS and Single Channel
DNN-based Speech Enhancement

Recent studies demonstrate the effectiveness of DNN for
speech enhancement, but in the context of speech recognition,
DNN-based speech enhancement is not always effective due
to nonlinear filtering, especially when the speech recognition
engine is not retrained. To overcome this, we consider the
combination of multi-channel BSS and single-channel speech
enhancement with DNN. Fig. 1 shows the block diagram of
the process. By applying a single-channel speech enhancement
with DNN to the output of multichannel BSS, we expect less
nonlinear distortion. Previous works show the effectiveness of
the combination of DNN and source separation [25].

Let Xlk ∈ CN be the multi-channel observation in the time-
frequency domain, which is obtained by short-time Fourier
transform (STFT) from xt, where l and k are the indices of
the time frames and frequency bins, respectively. The source
separation by multi-channel BSS can be represented as

Ylk = WkXlk (1)

where Wk ∈ CN×N is the demixing matrix estimated by BSS
at frequency index k and Ylk ∈ CN denotes the separated
signal. Note that Wk works as a time-invariant linear filter.

From Ylk, we select the separated signal that contains speech
and obtain the time-domain signal yt by applying inverse
STFT (ISTFT). Note that yt is a single-channel signal, not
a multi-channel signal. We then apply DNN-based single-
channel speech enhancement to yt.

ŝt = f(yt) (2)

where f(·) represents the DNN-based single-channel speech
enhancement.

B. Fine-Tuning of DNN Using BSS Outputs

Generally, it is essential to train DNN models on highly gen-
eralizable datasets and to guarantee performance on untrained
data. However, in this study, we use BSS outputs as input
data for the DNN, and pre-trained models may not perform
adequately on such BSS outputs. Therefore, we propose fine-
tuning the pre-trained model with BSS outputs. To verify the

effectiveness of this approach, we compare two types of fine-
tuning:
Fine-tuning A (FT-A):

As fine-tuning for driving noise in an in-car environment,
the DNN is retrained by using mixed signals of speech
and driving noise as inputs and clean speech as outputs.

Fine-tuning B (FT-B):
First, multi-channel observations of speech and driving
noise are processed by BSS to obtain separated signals.
These BSS outputs are then used as inputs, and clean
speech as outputs, to retrain the DNN.

For both types of fine-tuning, the dataset is divided into
training and validation sets. The DNN is retrained such that
the loss function on the training data is minimized. Training
is stopped when the loss function value on the validation data
starts to increase, indicating overfitting.

IV. EXPERIMENTS

A. Data Acquisition

In this study, evaluation test data were created from speech
sources recorded in an anechoic room, impulse responses, and
driving noise recorded in an actual car using a microphone
array.

The vehicle Alphard (Toyota, 2022) was used as the actual
car. In the car, a microphone array was fixed on the ceiling
between the 1st row seats and the 2nd row seats (Fig. 2).
The microphone array consisted of eight high-SNR MEMS
microphones (TDK InvenSense, SNR=74 dBA), and the dis-
tance between microphones was 6mm (Fig. 3). Analog–digital
converters (ADCs) were mounted on the microphone printed
circuit board (PCB) and controlled by a microcomputer (µC)
to synchronize all microphone channel samplings. The time-
stretched pulse (TSP) playback system and microphone array
were independent regarding sampling timing. On the other
hand, eight microphone channels were synchronized with each
other (Fig. 4).

To create the target speech signal, 48 utterances of speech
sources spoken by two males and two females were recorded
in an anechoic room. The utterances likely to be spoken in a
car situation were chosen.

Impulse responses were measured using a head and torso
simulator (HATS; Type4128, Brüel & Kjær) and the TSP
method. A TSP was played from HATS, which was mounted
on the 2nd seat of the parked car, and recorded by the micro-
phone array. The recorded TSPs were converted to impulse
responses by convolving inverse TSPs. Because the position
of HATS changes in accordance with the seat position, the
evaluation seat positions were set to three conditions at the
2nd seat (Fig. 5). Pos. 1 is the nearest position between the
microphone array and HATS. Pos. 2 is the normal seating
position. Pos. 3 is the farthest position between the microphone
array and HATS in the 2nd seat. Noise data were recorded in
a car driving at 100 km/h on the Tokai–Kanjo Expressway
(Aichi, Japan) and extracted to obtain steady noise with neither
road connections nor over-taking cars.
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Fig. 1. Block diagram of processing

Fig. 2. Position of microphone array

Fig. 3. Details of microphone array

The speech sources, recorded at a 44.1 kHz sampling, were
downsampled to a 16 kHz sampling rate. The TSP responses
were recorded at the 16 kHz sampling rate, so the impulse
responses were also at a 16 kHz sampling rate. The target
speech signal was created by convolving the impulse response.
The amplitude of the target speech signal was compensated for
so that the amplitude was almost the same as that of an actual

Fig. 4. Block diagram of TSP response recording

Pos. 3

Pos. 2Pos. 1

Microphone array

Fig. 5. Seat positions for impulse responses measurement

human voice in the car. The driving noise was also recorded at
a 16 kHz sampling rate. The TSP response and driving noise
were recorded in the same car and with the same microphone
fixture.

B. Methods

The evaluation test data were created by superposing the
target speech and driving noise signals with signal amplitude
compensation to simulate the actual car noise level. As a result
of this postprocess, three conditions with the same driving
noise level, the same speech source, and different transfer
function of evaluation test data were created. The length of
these evaluation test data was 24 s and included 1–3 s of
speech.

The training data for fine-tuning described in III-B were
also created with these data. We prepared training data by
separating the evaluation test data using AuxIVA, and ground
truth with clean speech signal. From four speakers, we selected
two speakers for training set, one for validation set, and the
other for test set.

In this study, we used Conv-TasNet [24] for the training
model. This model consists of three blocks: Encoder, Sep-
aration, and Decoder. The encoder module transforms the
input mixture signal into intermediate representations for each
segment. And for them, the separation module applies the
mask vector to separate sources. Then, the decoder module
reconstructs the signal.

We used the Conv-TasNet model pre-trained with Libri1Mix
dataset [26], [27]. We selected this model for its compatibility
with the dataset used in this study and its sufficient amount
of training. We fine-tuned this model with the training set
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TABLE I
EXAMPLES OF SPEECH CONTENT AND MEANING

Speech content Meaning
Onryo wo ageru. Turn up the volume.
Annai chushi. Stop the navigation guidance.

described in IV-A.
For the BSS methods applying DNN as post-processing

described in III-A, we employed AuxIVA based on prior
experiments. The STFT frame length was set to 4096 samples,
and the number of iterations was fixed at 100. In this study,
we manually selected the separated signal containing speech
from multiple separated signals. Developing an automatic
selection method is planned for future work. To reduce low-
frequency noise, we first applied a high-pass filter with a cut-
off frequency of 100Hz, and then performed DNN-based post-
processing.

Furthermore, to investigate the conditions under which the
proposed approach is superior, we evaluated the performance
with signal-to-noise ratio (SNR) in 5 dB increments, ranging
from −10 dB to −30 dB.

We used signal-to-distortion ratio improvement (SDRi) [28]
to evaluate the performance of noise reduction. The result is
obtained by subtracting the SDR before separation from the
SDR after separation.

To evaluate speech recognition performance, we defined
speech recognition accuracy as the percentage of correct
speech recognition results. Since command speech is often
used in car navigation systems, and the speech recognition
result cannot be said to be correct if the actual action does not
match the content of command speech, so we used speech
recognition accuracy to evaluate speech recognition perfor-
mance in this study. As a well-used speech recognition engine
with high accuracy, we used Google’s software (Cloud Speech-
to-Text V1) for speech recognition and manually checked
whether the recognition content matched the speech content.
Table I shows the examples of speech content.

We also calculated character error rate (CER) to objectively
evaluate the speech recognition performance. CER can be
computed by dividing the sum of the number of substitutions,
deletions, and insertions by the number of characters in the ref-
erence. We evaluated the performance after extracting speech
segments manually.

C. Results

Fig. 6 shows the SDRi results for the driving noise condi-
tion. FT stands for Fine-Tuning. The average SDRi in ideal
MaxSNR, which is designed by using true data, is 33.76 dB
in pos. 1, and this is considered the limit value of the linear
time-invariant filter. In contrast, the average SDRi value in
AuxIVA+DNN with FT-B result in pos. 1 was 29.74 dB,
and the average SDRi in all conditions was 28.37 dB. SDRi
improved by about 10 dB compared with the AuxIVA results.
This result would be attributed to the fact that Conv-TasNet,
the nonlinear model, can better interpret more complex source
characteristics and nonstationary noise. The characteristic to
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Fig. 6. SDRi for each method (FT-A: fine-tuning with mixture of speech and
in-car noise, FT-B: fine-tuning with BSS outputs)

TABLE II
SPEECH RECOGNITION PERFORMANCE FOR EACH METHOD

(*DESINED USING CLEAN SOURCE IMAGES)

Accuracy CER [%]
Methods Pos. 1 Average Pos. 1 Average

Unprocessed 0.938 0.785 2.23 15.3
BSS AuxIVA 0.917 0.819 4.47 11.9

AuxIVA+DNN 0.875 0.597 15.6 42.1w/o FT

BSS+DNN AuxIVA+DNN 0.917 0.757 5.21 17.5w/ FT-A
AuxIVA+DNN 0.958 0.826 1.99 12.7w/ FT-B

Ideal MaxSNR* 0.958 0.944 1.99 1.99

train significant features from large amounts of data would be
one of the most compelling reasons. And comparing with the
AuxIVA+DNN without FT result, SDRi improved about 5 dB.
From this result, we can confirm the improvement of noise
reduction performance by using the BSS outputs as inputs of
Conv-TasNet.

Table II shows the results of speech recognition performance
under driving noise. The average accuracy in AuxIVA+DNN
with FT-B result was 0.041 higher than that of the mixtures.
Comparing AuxIVA+DNN with FT-B result with the AuxIVA
result, the accuracy was equivalent to or higher score, and it
was higher than that of the AuxIVA+DNN without FT result. In
addition, the average CER in AuxIVA+DNN with FT-B result
was equivalent to ideal MaxSNR result in pos. 1. Generally,
the speech recognition performance with Conv-TasNet tends to
worsen due to nonlinear filtering, but by using BSS outputs as
input, the speech recognition accuracy was almost equivalent
to or higher than that of BSS.

Fig. 7 shows the results of speech recognition accuracies for
each SNR condition. The results using the proposed approach
show the best performance in conditions above −20 dB. This
results demonstrate that proposed approach works under high
SNR. In contrast, below −25 dB, we obtained the best perfor-
mance with AuxIVA, without Conv-TasNet. When the SNR is
low, the noise remaining in the separated signal using AuxIVA
is sometimes considered as speech, and the noise is sometimes
enhanced as much as target speech. This may be the reason
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for the lower speech recognition rate.
Finally, Fig. 8 shows the spectrograms of the mixtures,

the target speech signal, and the separated sound. It can be
confirmed that low-frequency noise in the mixture is reduced
or almost removed in AuxIVA+DNN with FT-B. However,
as seen in before 20 sec of AuxIVA+DNN with FT-B result,
the separation filter with Conv-TasNet may interpret the noise
as speech. In addition, sparse parts of the actual speech are
densely complemented by noise, which could not occur with
a linear filter. We consider these results to be the reason for
the low speech recognition performance.

V. CONCLUSION

In this study, we evaluated the performance of a speech
enhancement system combining multi-channel BSS and single-
channel DNN-based noise suppression in an in-car environ-
ment. Our approach demonstrated significant improvements,
with an average SDRi of approximately 30 dB. Additionally,
the speech recognition accuracy improved in both accuracy
and CER criteria. These results indicate that the combination
of BSS and DNN-based noise suppression can effectively
enhance speech recognition performance in car environments.
Future work will focus on leveraging more spatial informa-
tion by incorporating multi-channel DNNs to further improve
speech enhancement performance.
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