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Abstract—Blind source separation (BSS) is a technique to
separate each source signal from observed mixtures without prior
information, and independent low-rank matrix analysis (ILRMA)
is one of the state-of-the-art BSS methods. As not a fully blind
method, spatially regularized ILRMA (SR-ILRMA) achieves
higher separation performance by using prior information about
the demixing matrix or steering vectors (SVs) as a regularizer
in ILRMA. In this paper, we propose a new fully blind method
that models SVs using the time differences of arrival (TDOAs)
and simultaneously estimates TDOAs, the demixing matrix, and
other parameters. Then, we derive the update rule of TDOAs
on the basis of the majorization-minimization algorithm, which
guarantees the monotonic non-increase in the proposed cost
function. We also propose the method of initializing TDOAs based
on impulse responses for the proposed cost function. Numerical
experiments confirmed that the proposed method achieves better
separation performance than ILRMA, and initialization based on
impulse responses is effective for the proposed method.

I. INTRODUCTION

Blind source separation (BSS) [1] is a technique to separate

each source signal from mixtures observed by a microphone

array without any information about the transmission system

or the characteristics of the source. BSS is an essential prepro-

cessing technique for acoustic signal processing in real-world

applications, such as speech recognition and hearing aids.

Representative methods of BSS include frequency-domain

independent component analysis (FDICA) [2], independent

vector analysis (IVA) [3], [4], and independent low-rank matrix

analysis (ILRMA) [5]. FDICA estimates the demixing matrix

by assuming statistical independence between sources for each

frequency bin. However, the outputs in each frequency bin

are unordered, and thus, FDICA should align outputs over

all frequency bins (permutation problem). IVA and ILRMA

simultaneously estimate the demixing matrix and solve the

permutation problem using the generative model that has

the higher-order correlation between frequency bins in each

source. In particular, ILRMA assumes a more sophisticated

model than IVA and experimentally achieves a high separation

performance [5]. However, it has been reported that there is
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still room for improvement in the accuracy of solving the

permutation problem even in ILRMA [6].

In contrast to fully blind methods, several methods use

spatial prior information about the source directions and the

microphone array geometry to improve the separation perfor-

mance [7]–[10]. This spatial prior information often includes

some errors due to measurement errors in the directions of the

sources and the position of the microphone array, microphone

directivity, diffraction around the microphone array, and re-

verberation, among others. Therefore, in [7]–[10], such prior

information is utilized as a regularizer to tolerate some errors.

Spatially regularized ILRMA (SR-ILRMA) [9] applies such

regularizer to ILRMA and it has been reported that SR-ILRMA

achieves higher separation performance than conventional IL-

RMA.

In terms of applicability, a fully blind method is desirable. In

this paper, we propose a new fully blind method that estimates

the time differences of arrival (TDOAs), which implicitly retain

information about the source directions and the microphone

array geometry, simultaneously with the demixing matrix. In

[7], the demixing matrix and source directions were simulta-

neously estimated using different criteria for each. In contrast,

we aim to formulate this simultaneous estimation problem as

a single minimization problem. Then, for the majorization-

minimization (MM) algorithm [11], we design the auxiliary

function of the proposed cost function with respect to TDOAs

and derive the update rule that guarantees the monotonic non-

increase in the cost function. We also investigated the method

of initializing TDOAs for the proposed method.

First, we investigated the initial value dependence of TDOAs

in the preliminary experiment. Then, we conducted a numer-

ical experiment to confirm the effectiveness of the proposed

method.

II. CONVENTIONAL METHODS

A. MM algorithm [11]

The MM algorithm is an optimization method used to find s

that minimizes the cost function f(s). For a given cost function

f(s), the auxiliary function f+(s, s̃) is designed to satisfy the



following conditions:

f(s) ≤ f+(s, s̃), ∀s, s̃, (1)

f(s̃) = f+(s̃, s̃), ∀s̃, (2)

where s̃ is an auxiliary variable. When the auxiliary function

f+(s, s̃) exists, the update rules for the MM algorithm are

ŝ← s, (3)

s← argmin
s

f+(s, ŝ). (4)

The cost function f(s) is minimized by the iterative update of

(3) and (4) from a given initial value of s.

The MM algorithm guarantees the monotonic non-increase

in the cost function as

f(s(l)) = f+(s(l), s(l)) ≥ f+(s(l+1), s(l)) ≥ f(s(l+1)), (5)

where the superscript (l) denotes the parameter updated in

the lth iteration. Unlike other gradient-based optimization

methods, the MM algorithm does not require step size tuning.

The most crucial aspect of the MM algorithm is designing an

auxiliary function for each cost function of the optimization

problem. Auxiliary functions are not unique for each cost

function; thus, it is important to find a better auxiliary function

for achieving faster convergence.

B. ILRMA [5]

Let xij = (xij1, ..., xijM )T ∈ C
M , sij = (sij1, ..., sijN )T

∈ C
N , and yij = (yij1, ..., yijN )T ∈ C

N be the short-time

Fourier transforms (STFTs) of the observed, source, and sepa-

rated signals, respectively. Here, i ∈ {1, ..., I}, j ∈ {1, ..., J},
m ∈ {1, ...,M}, and n ∈ {1, ..., N} are the indices of

the frequency bins, time frames, microphones, and sources,

respectively, and ·T denotes the transpose. If each source

is a point source and the reverberation time is sufficiently

shorter than the window length of the STFT, the observed

signal is approximately represented as xij = Aisij . Here,

Ai = (ai1, ...aiN ) ∈ C
M×N is the mixing matrix representing

the time-invariant spatial characteristics of the transmission

system, and ain is the steering vector (SV) of the nth source.

If M = N and Ai is regular, the separated signals can be

obtained as

yij = Wixij , (6)

where Wi = (wi1, ...,wiN )H = A−1
i ∈ C

N×M is the

demixing matrix and ·H denotes the Hermitian transpose.

ILRMA assumes that the separated signal yijn follows a uni-

variate complex Gaussian distribution whose mean and time-

variant variance are zero and rijn, respectively. It is also as-

sumed that the time-variant variance rijn has low rankness and

is modeled by nonnegative matrix factorization (NMF) [12] as

rijn =
∑

k tiknvkjn, where tikn ≥ 0 and vkjn ≥ 0 are the

NMF variables, and k ∈ {1, ...,K} is the index of the NMF

basis. The cost function of ILRMA JILRMA is given as the

following negative log-likelihood of the observed signals:

JILRMA =
∑

i,j,n

( |wH

inxij |2
rijn

+ log rijn

)

− J
∑

i

log | detWi|2 + const., (7)

where const. is the term that does not include win, tikn, or

vkjn. The cost function JILRMA is minimized by alternately

updating win, tikn, and vkjn. In [5], the update rules for

the NMF variables tikn and vkjn are derived on the basis of

the MM algorithm. For the update of the demixing matrix

Wi, iterative projection (IP) [13] is applied. IP also guaran-

tees the monotonic non-increase in the cost function JILRMA.

Therefore, the total update rules for win, tikn, and vkjn also

guarantee the monotonic non-increase in the cost function

JILRMA.

C. SR-ILRMA [9]

To improve the separation performance of ILRMA, SR-

ILRMA uses prior information about the source directions and

the microphone array geometry as a regularizer in ILRMA.

Note that SR-ILRMA is not a fully blind method.

There are two types of regularizer in conventional SR-

ILRMA [9], [14]. In [9], the regularizer R1 is defined as

R1 = J
∑

i,n

µ(SR1)
in ∥win − ŵin∥22, (8)

where µ(SR1)
in is the weight of the regularizer and ŵin ∈ C

M is

the prior demixing filter corresponding to win. On the other

hand, in [14], the regularizer R2 is defined as

R2 = J
∑

i,n

µ(SR2)
in |wH

inâin(t) − δnn(t) |2, (9)

where µ(SR2)
in is the weight of the regularizer, and âin(t) ∈ C

M

is the prior SV of the target source. Here, n(t) is the index of

the target source and δnn(t) is the Kronecker delta.

For the convenience of the proposed method, unlike (8) and

(9), we define the regularizer R as

R = J
∑

i,n,n′

µinn′ |wH

inâin′ − δnn′ |2, (10)

where µinn′ is the weight of the regularizer, Âi =
(âi1, ..., âiN ) ∈ C

M×N is the prior mixing matrix correspond-

ing to Ai, and âin is the prior SV of the nth source. Note that

the regularizer itself is the same as that proposed in [8], [15].

In this case, the cost function JSR is defined as

JSR = JILRMA +R. (11)

In SR-ILRMA, the cost function JSR is minimized by alter-

nately updating win, tikn, and vkjn. Since the regularizer R
does not include tikn or vkjn, the update rules for tikn and vkjn
can be derived in the same manner as those in ILRMA. For the

update of Wi, vectorwise coordinate descent (VCD) [16] can

be applied instead of IP because JSR consists of a quadratic

form, the logarithm of the determinant, and a linear term of



win. Therefore, the update rules for win, tikn, and vkjn in

SR-ILRMA are as follows:

tikn ← tikn

√

∑

j vkjn|wH

inxij |2/(
∑

k′ tik′nvk′jn)2
∑

j(vkjn/
∑

k′ tik′nvk′jn)
, (12)

vkjn ← vkjn

√

∑

i tikn|wH

inxij |2/(
∑

k′ tik′nvk′jn)2
∑

i(tikn/
∑

k′ tik′nvk′jn)
, (13)

D̂in ←
1

J

∑

j

xijx
H

ij
∑

k tiknvkjn
+
∑

n′

µinn′ âin′ âH

in′ , (14)

uin ← (WiD̂in)
−1âin, (15)

ûin ← µinnD̂
−1
in uin, (16)

hin ← uH

inD̂inuin, (17)

ĥin ← uH

inD̂inûin, (18)

χin ←















1√
hin

, (if ĥin = 0)

ĥin

2hin

[√

1 +
4hin

|ĥin|2
− 1

]

, (otherwise)
(19)

win ← χuin + ûin. (20)

VCD also guarantees the monotonic non-increase in the cost

function JSR. Therefore, the total update rules for win, tikn,

and vkjn also guarantee the monotonic non-increase in the cost

function JSR.

III. PROPOSED METHOD

A. Motivation

SR-ILRMA requires prior information about the source

directions and the microphone array geometry to precalculate

ŵin or âin, i.e., SR-ILRMA is not a fully blind method.

However, a fully blind method is still preferable because of its

broad range of applications. In this paper, we propose a new

fully blind method to estimate SV âin simultaneously with

the demixing matrix and the NMF variables by minimizing

the cost function JSR.

If we directly optimize (11) with respect to âin′ considering

that the current Wi, tikn, and vkjn are fixed, over-fitting prob-

ably occurs. Therefore, we need to introduce a small number

of other parameters to model the SV. Then, we use TDOAs,

which implicitly have information about the source directions

and the microphone array geometry, as the parameters for SV.

To guarantee the monotonic non-increase in the proposed cost

function during the simultaneous estimation of TDOAs and

other parameters, we derive the update rules on the basis of the

MM algorithm. We also investigate the method of initializing

TDOAs for the proposed method.

B. Modeling

Assuming a plane wave arrival model, âin can be repre-

sented as

âin(τn) = (e−jωiτ1n , · · · , e−jωiτMn)T, (21)

where τn = (τ1n, · · · , τMn)
T ∈ R

M , j is the imaginary unit,

and ωi is the normalized angular frequency corresponding to

the frequency bin i. Here, τmn denotes the TDOA.

Introducing (21) into (11), we define the proposed cost

function Jproposed as

Jproposed = JILRMA+
∑

i,n,n′

µinn′

∣

∣wH

inâin′(τn′)− δnn′

∣

∣

2
. (22)

We consider optimizing (22) by alternating iterative updates

of win, tikn, vkjn, and τn′ . Since τn′ is fixed during updating

win, tikn, and vkjn, the update rules for win, tikn, and vkjn
are the same as those in SR-ILRMA. Therefore, we consider

the update rules for τn′ hereafter.

C. Derivation of update rules for proposed method

τn′ is only involved in the regularizer of (22); thus, we

consider minimizing the following cost function J :

J =
∑

i,n,n′

µinn′

∣

∣wH

inâin′(τn′)− δnn′

∣

∣

2
. (23)

We substitute (21) into (23) and rearrange the formula as

J =
∑

i,n,n′

µinn′

{

∑

m,m′

w∗
inme−jωiτmn′winm′ejωiτm′n′

− δnn′

∑

m

(w∗
inme−jωiτmn′

+ winmejωiτmn′ ) + δnn′

}

, (24)

= 2
∑

i,n,n′

µinn′

(

∑

m<m′

|winm||winm′ | cos θinn′mm′

)

+ 2
∑

i,n′

µin′n′

(

∑

m

|win′m| cosφin′m

)

+ const., (25)

where ·∗ denotes the complex conjugation and const. is the

term that does not include τn′ . Here, θinn′mm′ and φin′m are

respectively defined as

θinn′mm′ = ωiτmn′ − ωiτm′n′ + ∠winm − ∠winm′ , (26)

φin′m = ωiτmn′ + ∠win′m + π, (27)

where ∠· denotes the argument of a complex number.

Since (25) is the sum of cosine functions and the coefficients

of the cosine functions are always positive, we can use

an auxiliary function for the cosine function to design the

auxiliary function for the cost function J . For any ϑ and ϑ̃,

the following inequality [17] is satisfied:

cosϑ ≤ 1

2
sinc

(

g(ϑ̃)
)(

ϑ− ϑ̃+ g(ϑ̃)
)2

+ cos ϑ̃+
1

2
g(ϑ̃) sin ϑ̃, (28)

where sinc(ϕ) = sin(ϕ)/ϕ denotes the unnormalized sinc

function and g(·) = mod2π(·)−π. Here, mod2π(·) denotes the

modulo operation with 2π. The equality in (28) holds when



ϑ = ϑ̃, and the right-hand side of (28) serves as an auxiliary

function for cosϑ with the auxiliary variable ϑ̃.

Using (28), we can design the auxiliary function J + for J
as

J + =
∑

i,n,n′

µinn′

{

∑

m<m′

αinn′mm′

(

ωi∆τmn′

−ωi∆τm′n′ + g(θ̃inn′mm′)
)2
}

+
∑

i,n′

µin′n′

{

∑

m

βin′m

(

ωi∆τmn′ + g(φ̃in′m)
)2
}

+ const., (29)

where const. is the term that does not include τn′ , and

αinn′mm′ , βin′m, and ∆τmn′ are respectively defined as

αinn′mm′ = |winm||winm′ |sinc(g(θ̃inn′mm′)), (30)

βin′m = |win′m|sinc(g(φ̃in′m)), (31)

∆τmn′ = τmn′ − τ̃mn′ , (32)

where {τ̃mn′} is the set of auxiliary variables, and θ̃inn′mm′

and φ̃in′m are defined by substituting τmn′ = τ̃mn′ into (26)

and (27). The equality in (29) holds when τmn′ = τ̃mn′ for all

m and n′.

Since J + is a quadratic function of ∆τmn′ , we can deform

J + by using a quadratic form and linear term of ∆τn′ as

J + =
∑

n′

(

∆τT

n′Qn′∆τn′ − 2∆τT

n′bn′

)

+ const., (33)

where const. is the term that does not include τn′ . Here, ∆τn′ ,

Qn′ ∈ R
M×M , and bn′ ∈ R

M are defined as

τ̃n′ = (τ̃1n′ , · · · , τ̃Mn′)T ∈ R
M , (34)

∆τn′ = τn′ − τ̃n′ , (35)

(Qn′)mm′

=



































∑

i,n

µinn′ω2
i

(

∑

m′′ ̸=m

αinn′mm′′

)

+
∑

i

µin′n′ω2
i βin′m,

(m = m′)

−
∑

i,n

µinn′ω2
i αinn′mm′ , (m ̸= m′)

(36)

(bn′)m = −
∑

i,n

µinn′ωi

(

∑

m′

αinn′mm′g(θ̃inn′mm′)

)

−
∑

i

µin′n′ωiβin′mg(φ̃in′m), (37)

where (·)mm′ denotes the (m,m′)th element of a matrix.

Since (33) is separable for each n′, the auxiliary function

J + can be minimized by solving ∂J +/∂τn′ = 0M for all

n′. Here, 0M ∈ R
M denotes the M -dimensional zero vector.

Therefore, the MM-algorithm-based update rules for τ ′
n are

derived as

τ̃n′ ← τn′ , (38)

τn′ ← τ̃n′ +Q
†
n′bn′ , (39)

where ·† denotes the Moore–Penrose inverse. Note that we

use the Moore–Penrose inverse considering if Qn′ may not be

regular.

Since we can use the same update rules as (12)–(20) for

win, tikn, and vkjn, the total update rules for win, tikn, vkjn,

and τ ′
n in the proposed method are

tikn ← tikn

√

∑

j vkjn|wH

inxij |2/(
∑

k′ tik′nvk′jn)2
∑

j(vkjn/
∑

k′ tik′nvk′jn)
, (40)

vkjn ← vkjn

√

∑

i tikn|wH

inxij |2/(
∑

k′ tik′nvk′jn)2
∑

i(tikn/
∑

k′ tik′nvk′jn)
, (41)

D̂in ←
1

J

∑

j

xijx
H

ij
∑

k tiknvkjn
+
∑

n′

µinn′ âin′ âH

in′ , (42)

uin ← (WiD̂in)
−1âin, (43)

ûin ← µinnD̂
−1
in uin, (44)

hin ← uH

inD̂inuin, (45)

ĥin ← uH

inD̂inûin, (46)

χin ←















1√
hin

, (if ĥin = 0)

ĥin

2hin

[√

1 +
4hin

|ĥin|2
− 1

]

(otherwise)
(47)

win ← χuin + ûin (48)

τ̃n′ ← τn′ , (49)

τn′ ← τ̃n′ +Q
†
n′bn′ , (50)

âin′ ← âin′(τn′), (51)

where Qn′ and bn′ are calculated by substituting (49) into (36)

and (37), respectively. The update rules for win, tikn, vkjn,

and τ ′
n (40)–(51) guarantee the monotonic non-increase in the

cost function Jproposed.

D. Initialization method based on impulse responses

The cost function J is the sum of cosine functions, and

the cosine function has an infinite number of local optimal

solutions. Thus, the proposed method seems to be highly

affected by the initial values of τmn. Then, we consider the

initialization method for τmn. Instead of J , we consider
∑

i ∥Âi −W−1
i ∥2F for the initialization, where ∥ · ∥F denotes

the Frobenius norm. On the basis of Parseval’s theorem, the

following equation holds:
∑

i

∥Âi −W−1
i ∥2F

= γ
∑

m,n

∥

∥

∥
IDFT

[

{e−jωiτmn}
]

−IDFT
[

{(W−1
i )mn}

]

∥

∥

∥

2

2
, (52)

where γ is the length of the STFT window and IDFT[{zi}] ∈
R

γ denotes the inverse discrete Fourier transform of the

complex spetrum whose ith frequency bin is zi
When τmn is discrete, the (τmn + 1)th element of

IDFT[{e−jωiτmn}] becomes one and the other elements be-

come zero. Therefore, to minimize (52), we choose the τmn



Fig. 1. Recording conditions of impulse responses.

corresponding to the index where IDFT
[

{(W−1
i )mn}

]

, which

means the impulse response (IR) calculated from Wi, takes the

maximum value. Then, we use this optimal τmn of the pseudo-

problem as the initial value of the proposed cost function.

IV. EXPERIMENTS

First, we considered a subproblem to estimate TDOAs

in the situation where the demixing matrix was fixed and

conducted a preliminary experiment to investigate the initial

value dependence of the proposed method. Next, we evaluated

the separation performance of the proposed method through a

numerical experiment. Both experiments were conducted using

two sources and two microphones.

A. Experimental conditions

We used three pairs of instruments (bass/drums,

drums/vocal, vocal/bass) for each of the six tracks in

the DSD100 dataset [18] as dry sources (total 18 pairs).

Then, each dry source was convolved with two conditions of

impulse responses in the RWCP database [19] (see Fig. 1). The

convolved signals were mixed so that the input signal-to-noise

ratio became 0 dB. The total number of the observed signals

was 18 × 2 = 36. The sampling rate was 16 kHz. STFT was

performed using a 256-ms-long Hamming window with a

shift length of 64ms.

B. Initial value dependence

To investigate the initial value dependence of the proposed

method, we considered the subproblem to estimate the TDOAs

in the situation where the demixing matrix Wi was fixed. First,

we obtained the demixing matrix by ILRMA as the preprocess.

Then, the demixing matrix was fixed, and only the updates

related to TDOAs were iteratively performed to observe the

behavior of the cost function J during iteration.

In ILRMA as the preprocess, the demixing matrix was

initialized with the identity matrix, and the NMF variables

tikn and vkjn were initialized with random numbers from

a uniform distribution on [0, 1]. We used 10 random seeds

for each observed signal, resulting in 360 demixing matrices.

The number of iterations was set to 100. In the estimation of

TDOAs, we compared two initialization methods: (i) random

sampling and (ii) proposed initialization described in Section

III-D (IR-based initialization method). In random sampling, 10

different initial values were uniformly sampled from [−5, 5].
The weighting coefficient µinn′ for the regularizer was set as

Fig. 2. Behavior of the cost function (23) for each initialization method. The
average behavior for random initial values is shown by the solid blue line, the
behavior for the random initial values that resulted in the smallest final value
of cost function is shown by the dashed blue line, and the behavior for the
initial value calculated by the IR-based initialization method is shown by the
solid red line.

µinn′ = 1 (i ̸= 1, I) and µinn′ = 0 (i = 1, I). The number of

iterations was set to 200.

Fig. 2 shows the behavior of the cost function for the

following three cases: the solid blue line shows the average

behavior for the 10 random initial values, the dashed blue line

shows the behavior for the initial value that resulted in the

smallest final value of cost function among the 10 random

initial values, and the solid red line shows the behavior for the

initial value calculated by the IR-based initialization method.

It can be confirmed that the IR-based initialization method

achieves the smallest value of the cost function even at the

end and a faster convergence. This suggests that the IR-based

initialization method yields the initial value close to the global

optimum of the subproblem.

C. Comparison of separation performance

To confirm the efficiency of the proposed method, we

compared the following three methods.

• ILRMA [5]

• Proposed method (random init.): TDOAs are initialized

by a random sampling.

• Proposed method (IR-based init.): TDOAs are ini-

tialized by the IR-based initialization method using the

demixing matrix precomputed by ILRMA.

In ILRMA, initialization was the same as that described in

Section IV-B. The number of iterations was set to 200. In

the proposed method (random init.), the demixing matrix and

NMF variables were initialized in the same manner as in

ILRMA in Section IV-B. TDOAs were initialized with random

values from the uniform distribution on [−5, 5]. The number

of iterations was also set to 200 as in baseline ILRMA.

In the proposed method (IR-based init.), to start with better

initial values of TDOAs, we first performed 20 iterations

of ILRMA to obtain the demixing matrix as the preprocess.

TDOAs were then initialized using the IR-based initialization

method, followed by 180 iterations of the proposed method.



Fig. 3. Average SDR improvement for each method.

The preprocessing ILRMA was initialized in the same manner

as in Section IV-B. In the subsequent proposed method, the

NMF variables were again initialized as described in Section

IV-B. The demixing matrix was initialized with the inverse of

the mixing matrix Âi computed from the TDOAs obtained by

the IR-based initialization method.

Since the plane wave arrival model does not account for

reverberation, strong regularization may affect the final sep-

aration performance. To mitigate this issue, the weighting

coefficient µ
(l)
inn′ for the regularizer in the lth update was

decayed as

µ
(l)
inn′ =

{

0, (i = 1, I)

µomax [1/2− l/L, 0] , (i ̸= 1, I)
(53)

where L is the number of iterations for proposed methods,

i.e., L = 200 in proposed method (random init.) and L =
180 in proposed method (IR-based init.). The value of µo was

determined by a preliminary experiment and set to 10−3.

In each method, we used 10 random seeds for each of the

observed signals (total 360 trials) and calculated the average

of source-to-distortion ratio (SDR) [20] improvement as the

evaluation metric for the separation performance.

Fig. 3 shows the average SDR improvement for each

method. It can be confirmed that the proposed method achieves

better performance than ILRMA. Additionally, the proposed

method (IR-based init.) achieves the largest SDR improvement.

Therefore, we can confirm the effectiveness of the proposed

fully blind method.

V. CONCLUSION

In this paper, we proposed a new fully blind method

that models SVs using TDOAs and simultaneously estimates

TDOAs, the demixing matrix, and NMF variables. To guaran-

tee the monotonic non-increase in the cost function, we derived

the MM-algorithm-based update rules. We also investigated

the method of initializing TDOAs for the proposed cost

function. Numerical experiments confirmed that the proposed

method achieves higher separation performance than ILRMA.

Additionally, we confirmed the effectiveness of the IR-based

initialization method for the proposed method.
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