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Abstract—This study presents a comprehensive workflow for
cell segmentation using the Monuseg dataset. Our method inte-
grates several advanced techniques to enhance the performance
of segmentation models. We apply Principal Component Analysis
(PCA) and Gaussian Mixture Model - Expectation Maximization
(GMM-EM) clustering for data pre-processing. The training
and evaluation significantly improved the mean IoU metric,
demonstrating the enhanced performance of Language meets
Vision Transformer (LViT) compared to other deep-learning
networks. This constructed workflow shows substantial potential
in improving the accuracy of cell segmentation tasks, which is
crucial and beneficial for various biomedical applications.

I. INTRODUCTION

Cytopathology, the study of cellular-level diseases, is a
pivotal tool in cancer screening. Artificial intelligence can
potentially revolutionize diagnostics, especially segmenting
cell images from micrographs.

Accurate cell segmentation is critical, the cornerstone of
medical image analysis. It enables the precise identification
and classification of cellular structures within microscopic
images. It is significant for various biomedical applications,
such as computational pathology, disease diagnosis, prognosis,
and computer-aided diagnosis.

For the classical approach, the Split and Merge Watershed
(SM-Watershed) method [1] for cell segmentation in fluo-
rescence microscopy images. Initially, the Marker-Controlled
Watershed (MC-Watershed) algorithm provides preliminary
segmentation. The Split phase separates clusters using cell
characteristics like size and convexity, while the Merge phase
refines these segments by eliminating over-segmentation. This
method effectively balances segmentation accuracy without
needing labeled data.

The segmentation method that combines the K-L transform
and the OTSU method is not just a standard cell segmentation
method. It is a proven and effective technique. The K-L
transform is utilized to select the most informative channel
from the image, followed by the OTSU method to determine
an optimal automatic threshold value for segmentation. This
approach has been applied to various types of cell images,
demonstrating its practicality and effectiveness.

While effective in specific scenarios, classical approaches
such as Watershed, OTSU, and K-L transform often need help
with the complexity and variability of all cell segmentation

tasks. These methods can result in over-segmentation, under-
segmentation, or mis-identification of cells. Consequently,
recent research has increasingly focused on deep learning
techniques, which offer improved accuracy and robustness
in handling diverse and complex cell images (see detail in
Section II).

Deep Learning-based innovative algorithms generally
archive state-of-the-art performance in medical imaging seg-
mentation. Among the models, we are inspired by the LViT
(Language meets Vision Transformer) model [2] since it tack-
les the challenge of limited labeled data in medical image
segmentation by incorporating medical text annotations. This
text information supplements the image data, allowing the
model to learn even with limited labeled examples.

We improve the performance of the LViT model by ensuring
high-quality data input. In more detail, we integrate Princi-
pal Component Analysis (PCA) for dimensionality reduction
and Gaussian Mixture Models with Expectation-Maximization
(GMM-EM) in the pre-processing pipeline to optimize the
clustering process. This has resulted in improved preliminary
segmentation maps, a promising outcome that paves the way
for further advancements in cell segmentation.

The following parts are organized as follows: Section II
shows some base deep learning models applied in cell seg-
mentation. Section III focuses on our contribution to the com-
bination of GMM-EM and LVit model. Moreover, Section IV
indicates the experiment results, and Section V determines this
method’s conclusion and discussion.

II. DEEP LEARNING APPROACHES FOR CELL
SEGMENTATION IN MICROSCOPIC IMAGES

This section reviews some deep-learning approaches that
have had good results in the last few years, particularly on
the MoNuSeg dataset, a widely used benchmark dataset in
cell segmentation. Understanding the performance of these
approaches on this dataset will help us decide the direction
of continuing research in this field.

In 2020, Jha et al. [3] proposed a Double U-Net model
by adding another U-Net at the bottom of the network to
capture supplementary semantic information efficiently. Fur-
ther, Atrous Spatial Pyramid Pooling (ASPP) was adapted to
capture contextual data, and the post-processing techniques



significantly improved the result of automatic polyp detec-
tion. However, since this network uses two Unet models, the
increase in the number of parameters is a limitation of this
model.

Wang et al. [4] with a Bending Loss Regularized (BLR)
model is successful in tackling the challenge of segmenting
overlapped nuclei in histopathology images. This model ap-
plied high and low penalties to contour points with large and
small curvature. In addition, the bending loss helps to avoid
the generation of boundaries for two or more nuclei that are
touching. The BLR model performs better than other models.
However, there is still a problem with the segmentation of
overlapping nuclei.

Hassan et al. [5] proposed a Pyramid Scene Parsing with
SegNet (PSPSegNet) to identify and delineate the boundaries
of nuclei. The experiment indicates that the PSPSegNet model
is effective with F1-Score and AJI at 0.8815 and 0.7080, re-
spectively. Concerning the object level, the PSPSegNet model
relies on training data and, therefore, is unsuitable for exacting
cell shapes.

The author Lagree et al. [6] proposed a gradient-boosting
U-Net(GB U-Net) to segment breast tumor cell nuclei. This re-
search shows that deep convolutional neural networks are suit-
able for training with transfer learning on a set of histopatho-
logical images independent of breast tissue to segment or not
tumor nuclei of the breast.

In the same year, 2021, Li et al. [7] proposed the Bagging
Ensemble Deep segmentation (BEDs) model, which aggre-
gates self-ensemble learning and testing stage augmentation
to improve the robustness of nucleus segmentation. However,
this model needs to segment better when the images are
complicated in shape and structure.

One year later, Qin et al. [8] proposed the REU-Net model
to improve segmentation accuracy by focusing on region-
specific features within images. It leverages enhanced feature
extraction techniques to identify better and segment nuclei in
medical images. However, while REU-Net boosts performance,
it may introduce additional computational complexity due to
its region-focused approach. Liang et al. [9] also use region
information to build a model that integrates Guided Anchoring
(GA) into the Region Proposal Network (RPN) and using a
fusion box score (FBS) with soft non-maximum suppression
(SoftNMS). This model improves accuracy over traditional
CNN-based approaches and enhances cell-level analysis in
digital tissue images.

In 2023, the large-scale model named Segment Anything
Model (SAM) was introduced [10]. This model is trained on 11
million images with over 1 billion masks for general-purpose
segmentation. Although SAM doesn’t initially provide high-
quality segmentation for medical images, its masks, features,
and stability scores are valuable for improving medical image
segmentation models. This model can be applied to augment
inputs for models like U-Net, with experiments on three tasks
that show its effectiveness.

In recent years, U-Net and its variants have been widely

used in pathology image segmentation, leveraging skip connec-
tions to recover detailed information. However, the semantic
gap between encoder and decoder can hinder performance.
To address this, the FusionU-Net [11] incorporates a fusion
module to reduce semantic gaps by exchanging information
between skip connections. Our two-round fusion design con-
siders local relevance and bi-directional information exchange
across layers. In addition, another model, named BiU-Net [12],
combines CNNs and transformers using a two-stage fusion
strategy. The Single-Scale Fusion (SSF) stage integrates local
and long-range features, while the Multi-Scale Fusion (MSF)
stage eliminates the semantic gap between deep and shallow
layers. Additionally, a Context-Aware Block (CAB) in the bot-
tleneck enhances multi-scale features in the decoder, improving
segmentation performance.

III. THE PROPOSED APPROACH: COMBINATION LVIT
MODEL WITH GMM-EM METHODS

Compared to the successful methods mentioned in Sec-
tion II, the LViT (Language meets Vision Transformer)
model [2] overcomes these limitations by significantly enhanc-
ing context awareness and reducing dependency on extensive
labeled data, making it more suitable for cell segmentation
tasks. LViT effectively captures global relationships within
images, leading to more accurate and efficient segmentation
results than Unet++. Thus, we enhanced this model in this
paper by applying the pre-processing stage to improve perfor-
mance (see Figure 2).

Before describing our contribution in more detail, we revise
the main idea of the LViT model, as illustrated (Figure 1):
LViT uses text information to supplement the image data,
allowing the model to learn even with limited labeled exam-
ples. Furthermore, LViT leverages semi-supervised learning,
utilizing text data to generate high-quality pseudo-labels for
unlabeled images. An Exponential Pseudo Label Iteration
(EPI) mechanism assists the Pixel-Level Attention Module
(PLAM) preserve local image features during this process.
The Exponential Pseudo Label Iteration (EPI) mechanism is
a critical component in LViT, designed to enhance the quality
of pseudo-labels for unlabeled image iterative. EPI refines
the pseudo-labels in each iteration by incorporating feedback
from the model’s predictions, which become increasingly
accurate over time. This iterative process improves pseudo-
labels’ reliability, facilitating more effective semi-supervised
learning. Complementing EPI, the Pixel-Level Attention Mod-
ule (PLAM) ensures that fine-grained details are preserved
during segmentation. PLAM assigns attention scores to each
pixel, allowing the model to focus on critical regions within
the image and maintain local feature integrity. This dual
mechanism of EPI and PLAM enables LViT to achieve high
precision in cell segmentation tasks, even with limited labeled
data.

Compared to models like U-Net++ and BiO-LinkNet, which
rely solely on convolutional operations, LViT’s transformer
architecture allows it to capture local and global information
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Fig. 1. Illustration of (a) the proposed LViT model and (b) the Pixel-Level Attention Module (PLAM). The proposed LViT model is a Double-U structure that
combines a U-shape CNN branch with a U-shaped ViT branch [2].

more effectively. While MaxViT-UNet achieves high perfor-
mance using a combination of convolutions and transformers,
LViT’s advantage lies in its ability to leverage image data and
text annotations. This adaptability makes it more effective in
cell segmentation tasks.

Our pre-processing stage prepares the data and ensures
a robust and reliable process for LViT optimally. We use
Principal Component Analysis (PCA) to reduce the data’s di-
mensionality, followed by Gaussian Mixture Models (GMMs)
with Expectation Maximization (EM) to group images into
distinct clusters.

The Principle Component Analysis was first applied in our
pre-processing pipeline to reduce the feature vectors’ dimen-
sions, including pixel intensity values and texture features
extracted from the cell images. The PCA transformation, a
crucial step in our pipeline, is defined in Equation 1.

z = WT (x− µ) (1)

Where x is the original feature vector, µ is the mean of
the feature vectors, W is the matrix of eigenvectors of the
covariance matrix, and z is the transformed feature vector in
the principal component space.

Following dimensionality reduction, GMM-EM was applied
for image clustering. GMM-EM was chosen due to its ability
to effectively process diverse and complex cellular data, its
flexibility in modeling complex distributions, and its capacity
to provide soft probabilities for each cluster. The GMM model
is defined as in Equation 2.

p(z) =

K∑
k=1

πkN (z|µk,Σk) (2)

Where z is the PCA-transformed feature vector, K is the
number of clusters, πk is the weight of the k-th cluster,
and N (z|µk,Σk) is the probability density function of the
Gaussian distribution with mean vector µk and covariance
matrix Σk.

An iterative experimental process meticulously determined
the number of clusters K. This process was designed to
optimize the separation between clusters and the compactness
within each cluster, ensuring the highest quality results. Upon
completion of the clustering process, each pixel in the image
was labeled according to the cluster with the highest posterior
probability, generating a preliminary segmentation map.

Our research has achieved several notable outcomes:
• Developed a pre-processing pipeline that effectively in-

tegrates PCA for dimensionality reduction with GMM-
EM for clustering, providing high-quality input for the
subsequent LViT model.

• Our research has led to a significant achievement-the
combination of PCA and GMM-EM has optimized the
clustering process. This has resulted in improved prelim-
inary segmentation maps, a promising outcome that paves
the way for further advancements in cell segmentation.

IV. EXPERIMENTS RESULTS

The experiment is evaluated using the highly regarded
MICCAI MoNuSeg dataset. This dataset comprises 44 images,
each sized at 1000 × 1000 pixels with 28, 846 labeled cell
nuclei distributed across nine organs: breast, liver, kidney,
prostate, bladder, colon, stomach, lungs, and brain. The dataset
is organized into 24 images for training, 6 for validation, and
14 reserved for testing.

Our approach involved extensive experimentation with var-
ious sizes of image patches in images of the MoNuSeg2018
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Fig. 2. Proposed Model for Cell Segmentation over Microscopic Images combining GMM-EM to LViT Model

Fig. 3. Cell segmentation results on MoNuSeg2018 dataset [13] using the proposed model, achieving a Dice score of 0.80, IoU of 0.66, and a runtime of
17155.2 seconds on K = 2 clusters, trained on an NVIDIA A100 (Google Colab Pro).

Method LVit [2] Proposed model MaxViT-UNet [14] Dice Unet [15] Unet++ [16] BiO-LinkNet [17] LinkNet [17] R2U-Net [18]
Dice 0.78 0.80 0.83 0.76 0.77 0.77 0.77 0.80
IoU 0.65 0.66 0.72 0.62 0.63 0.62 0.63 0.68

TABLE I
SEMANTIC SEGMENTATION RESULTS ON THE MONUSEG2018 DATASET.

dataset. We were cropping images to 256×256 pixels produced
trade-off results. We also addressed memory constraints by
adopting overlapping patches with a 70-pixel overlap while
maintaining the original organ distribution.

Given the relatively small dataset size of 1, 100 patches,
this paper employs data augmentation techniques to enhance
model training and accuracy, effectively expanding the dataset
to 2, 200 images. These techniques, including random hori-
zontal flipping, rotating, and adding a Gaussian filter with a
random parameter, were developed to address the challenges of
working with a small dataset, demonstrating our commitment
to overcoming research obstacles.

The semantic segmentation model’s accuracy is evaluated
using the Intersection over Union (IoU) measure and the
Dice coefficient. For the individual segmentation problem, the
model’s accuracy is assessed based on the Score value. The
IoU, Dice, and Score measurements have values in the range

[0, 1]; when the value is close to 0, the model’s accuracy is
low; the closer it is to 1, the higher its accuracy.

Using the LViT method, each image in the Monuseg2018
dataset is accompanied by a text passage providing a spe-
cific description and evaluation of that particular image. In
more detail, each image describes the characteristics of the
nuclei, such as evenly/sparse distribution and higher/lower
density areas, etc. There may also be several images with
the same text passage. We pre-processed the images using
the GMM-EM (Gaussian Mixture Model with Expectation-
Maximization) technique to effectively process the visual data
before applying the LViT method. This process clusters only
the image data, creating groups of visually similar images
while maintaining the individual text descriptions for each
image. We conducted experiments with different K values to
determine the optimal number of clusters (K) for the image
data. We adjusted based on experimental results and dataset
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characteristics to optimize model performance. This approach
allows us to leverage both the clustered visual information and
the unique textual descriptions for each image in our dataset,
enhancing the overall performance of the LViT method.

K Dice Score IoU Score Execution Time (seconds)
1 0.7659 0.6307 13449.25
2 0.8015 0.6566 17155.2
3 0.7039 0.5522 23643.5

TABLE II
PERFORMANCE METRICS WITH DIFFERENT NUMBERS OF CLUSTERS ON

THE TEST DATASET.

Following the data pre-processing with GMM-EM, we ex-
perimented with different numbers of clusters K, starting from
1 and incrementally increasing. After training the LViT model
from scratch on each clustered dataset, we selected K = 2 as it
yielded the highest accuracy compared to other configurations.
Choosing K = 2 allows the model to capture enough variance
to segment the cells accurately while maintaining robustness
against noise or unnecessary complexity. This balance likely
leads to better generalization, as evidenced by the superior
performance metrics. Table II shows the performance metrics
for each K. The model’s performance was then evaluated on
the test set using metrics such as IoU and the Dice coefficient.
The results (see Table I) are a testament to our progress, with
the LViT method combined with GMM-EM achieving an IoU
of 0.66 and a Dice coefficient of 0.8, surpassing the baseline
LViT model (IoU = 0.65, Dice = 0.78). Compared with stan-
dard LViT and U-Net++, our proposed method demonstrates
that our approach is competitive and a significant step forward
in the microscopy image processing field.

Table I illustrates our results compared to another method.
The results of the proposed method show significant improve-
ment in cell segmentation performance on the MoNuSeg2018
dataset compared to other methods. Our approach achieved
the second highest Dice score of 0.80 and an IoU of 0.66,
demonstrating better accuracy and reliability. In contrast, the
standard LViT method scored a Dice of 0.78 and IoU of 0.65,
indicating a noticeable enhancement with improvements. The
proposed method outperforms both metrics compared to Dice
Unet and Unet++, which scored Dice values of 0.76 and 0.77
and IoU values of 0.62 and 0.63, respectively.

Although MaxViT-UNet achieves a higher Dice score of
0.83, its superior performance can be attributed to its multi-
axis attention mechanism, which better captures local and
global contexts. This, together with combining convolutional
layers and transformers, enhances its segmentation accuracy.
However, its increased complexity and computational demands
highlight the trade-offs, whereas the proposed method offers a
strong balance between performance and efficiency.

Other methods, like BiO-LinkNet and LinkNet, with Dice
scores of 0.77 and IoU scores of 0.62 and 0.63, respectively,
also fall short of our results. The R2U-Net method also
performs well, with a Dice score of 0.80 and an IoU of
0.68. However, our method remains robust and consistent

across both evaluation metrics, reinforcing its effectiveness for
accurate and efficient cell segmentation.

Figure 3 presents three cropped images from the original
MoNuSeg2018 dataset. The figure indicates that using the
GMM-EM and LViT effectively segments overlapping cells
and distinguishes between cells and other components, such
as blood, which are not the focus of this study.

V. CONCLUSIONS AND DISCUSSIONS

This paper presented an enhanced cell segmentation ap-
proach by integrating the LViT model with GMM-EM pre-
processing. The use of clustering is crucial in improving the
learning process, as it allows the model to capture more distinct
and characteristic features from the data. By applying PCA for
dimensionality reduction, followed by GMM-EM clustering,
the data is effectively segmented into meaningful groups,
making it easier for the model to focus on relevant patterns.
This structured input significantly boosts the accuracy and
reliability of the model. This combination achieved superior
performance when evaluating the MICCAI MoNuSeg dataset.
In the future, we plan to collect data from diverse sources and
further optimize the model parameters to enhance the accuracy
of our approach significantly.
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