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Abstract—Neural codecs reduce speech data transmission la-
tency and serve as the underlying tokenizer for speech language
models (speech LMs). Preserving emotional information in these
codes is essential for effective communication and contextual
understanding. However, there is a lack of research on emotional
loss in existing codecs. This study evaluates both neural and
legacy codecs using subjective and objective methods on emotion
datasets such as IEMOCAP. Our study identifies which codecs
best preserve emotional information at various bitrates. We found
that training a codec with both English and Chinese data had
limited success in retaining emotional information in Chinese.
Additionally, resynthesizing speech using these codecs degrades
speech emotion recognition (SER) performance, especially for
emotions such as sadness, depression, fear, and disgust. Human
listening tests confirmed these findings. This study will guide the
development of future speech technologies to ensure that new
codecs maintain the emotional integrity of speech.

I. INTRODUCTION

Audio codecs are initially introduced to compress speech signals
into fewer bits to achieve low-latency communication. They generally
include an encoder and a decoder, which respectively compress a
speech signal into codes and reconstruct the codes back into the
speech signal. Given their success, researchers are exploring how
speech perception tasks can benefit from the advanced capabilities of
large language models (LLMs), which have demonstrated remarkable
performance in text modeling and surpassed human capabilities in
a variety of tasks [1]. Recent advances in speech language models
(speech LMs) use the codes of speech codecs as discrete tokens [2],
[3]. Speech LMs are distinct in their ability to extract rich information,
such as emotions, from spoken languages [4]. In addition to capturing
content information, they delve into the nuances of the speaker’s
identity and emotion that cannot be fully captured by text alone.

Since codec models are widely used to reduce communication
latency and serve as tokenizers for speech LMs, their codes should
preserve signal integrity, including emotional information. For in-
stance, when an individual communicates with a virtual assistant
through voice commands, the emotional information embedded in
the speech signal can provide valuable context for the assistant
to deliver a more empathetic and tailored response [5]. However,
speech codecs used in communication pipelines inadvertently distort
or discard critical emotional cues during the compression process. As
a result, the virtual assistant may struggle to accurately perceive the
user’s emotional state, thereby affecting the interaction. Therefore,
preserving the emotional information in the speech signal is crucial
for the effectiveness of speech LMs.

Many advanced neural codec models have been developed using
different techniques [6]. However, existing evaluations of these codecs

have mainly focused on signal-level metrics, overlooking critical par-
alinguistic elements such as emotion [7]. While Codec-SUPERB [8]
endeavors to compare emotion preservation in speech reconstructed
by neural codecs, its evaluation was limited to a single dataset in a
single language. Similarly, Siegert et al. [9] studied the intelligibility
of codec-compressed emotional speech but neglected to evaluate the
emotional content of the speech. Previous work compared speech dis-
torted by legacy codec compression algorithms and evaluated speech
emotion recognition (SER) performance through human perception
[10] and automatic methods such as Gaussian mixture model [11]
or Support Vector Machine (SVM) [12]. However, these studies are
limited to legacy codecs, which have poor performance compared
to neural codecs. The SER models used are also less accurate than
today’s advanced models.

There is an urgent need for a comprehensive comparative analysis
of the ability of codec models of different languages on different
downstream SER systems under staged or real-world, multilingual,
and multi-speaker dataset conditions. We consider various factors
of the codec, such as bitrate, pretraining dataset language, and
architecture. Different evaluations are conducted to comprehensively
assess these factors and their impact on the accuracy of pre-trained
SER systems and human emotion perception. Our goal is to provide
the research community with valuable insights to guide the design of
new codecs. Our study comprehensively evaluates the efficacy of 14
neural and 3 legacy codecs in preserving emotional information across
15 different SER models on 6 datasets, revealing their potential for
enhancing affective computing in real-world applications. The main
flow of Emo-Codec is shown in Fig. 1.

Our main contributions are as follows:

o Emo-Codec provides comprehensive performance benchmarks
for 14 codec models and 3 legacy codecs in 6 emotion datasets,
highlighting their ability to preserve emotional information.

o Descript Audio Codec (DAC) series [13] consistently outper-
forms other codecs in SER at the same bitrate. Additionally,
AcademiCodec [14] and SpeechTokenizer [15] show consider-
able performance in low-bitrate scenarios.

o Training a codec using Chinese and English data resulted in lim-
ited improvements in preserving Chinese emotional information
compared to training a codec using only English data.

o Of all the emotions investigated, some negatively valenced
emotions, such as sadness, depression, fear, and disgust, showed
higher performance declines than others.

II. METHODOLOGY

This section first provides an overview of our rationale for con-
ducting a large-scale evaluation and then explains each part in detail.



Macro-F1 score
(Original)

train Emotion Objective emotion
test SSL Models recognition ] retention capacity

T

||I||||||4>

Original Audio

fest |
o) bl

Resynthesized Subjective emotion
Audio retention capacity

Macro-F1 score
(Codec)

Human Subjective
Hearing
M

Human Subjective

Hearing

Fig. 1: The pipeline of Emo-Codec. We only use the original training audio from emotion datasets to train the emotion recognition model
and fine-tune the SSL model at the same time. Then, we evaluate the testing set’s original audio and audio resynthesized using various codecs
on SER models. We calculate the F score difference of SER to obtain the objective emotion retention capacity. We also conduct human

subjective listening tests using original audio and resynthesized audio to

A. Rationale for the evaluation

We evaluate both neural and legacy codecs to ensure a compre-
hensive analysis. The legacy codecs serve as established benchmarks,
enabling us to measure the progress achieved with neural codecs.
For the neural codecs, we select models based on their functionality
and design principles. These codecs incorporate a range of innovative
architectural designs and sophisticated methods to ensure optimal
performance and versatility in processing various types of speech data.
Specifically, we target models explicitly tailored for speech LM tok-
enization. Additionally, we consider models trained on mixed Chinese
and English data (for example Funcodec) to ensure comprehensive
language coverage and take into account the nuances and emotional
variances inherent in both languages. We evaluate all codec models
at similar bitrates to ensure a fair comparison.

For the SER models, we use different representations of self-
supervised learning (SSL) models (shown in Table I) to train the
SER model because the SSL paradigm has achieved state-of-the-art
performance in SER tasks [16], [17]. We employ a variety of emotion
datasets to increase diversity in languages, dataset collection methods
(real world, improvised act, scripted act), and speakers.

B. Codec models

We carefully selected seven cutting-edge, high-fidelity neural codec
models for comparative analysis, as shown in Table II. Encodec
[18] serves as the baseline. We used the 2, 4, 8, 16, and 32 layer
settings to compare with other codecs at similar bitrates. Building on
Encodec, AudioDec [19] introduces a novel approach that employs
group convolution to accelerate and streamline operations. Aca-
demiCodec [14] uses group-residual vector quantization to reduce
codebook usage while maintaining comparable performance. We
used a universal version of this model. FunCodec [20] proposes
a frequency domain codec that achieves comparable performance
with lower computational and parameter complexity. Additionally,

TABLE I: SSL models used in this study and their number of
parameters (Parm.

Model | Parm. (M) | Model | Parm. (M)

Wav2Vec 2.0 XLS-R-1B 965 VQ-Wav2Vec 34
WavLM large 317 Wav2vec-large-960h 33
Wav2Vec 2.0 Large Robust 317 TERA 21
HuBERT Large 317 NPC 19
Wav2Vec2 large 960h 317 VQ-APC 5
Data2vec large 960h 313 APC 4
DeCoAR 2.0 90 Modified CPC 2
Mockingjay 85

obtain the subjective emotion retention capacity.

TABLE II: Codecs evaluated in this study and their transmission
bitrates. The column ID shows the identification number of all codecs,
kbps represents the bitrate in kilobits Per Second, and sr shows the
sampling rate in kHz.

ID Codec Codec Configuration kbps | sr
u AudioDec symAD_libritts_24000_hop300 6.4 24
C AcademiCodec large universal 2 16
S SpeechTokenizer hubert_avg 4 16
D1 DAC_16k 6 16
D2 DAC DAC_24k 24 24
El 1.5 24
E2 3 24
E3 Encodec Encodec_24k 6 24
E4 12 24
E5 24 24
F1 en_libritts_16k_nq32ds320 16 16
F2 Funcodec en_libritts_16k_nq32ds640 8 16
F3 zh_en_16k_nq32ds320 16 16
F4 zh_en_16k_nq32ds640 8 16
N Soundstream Soundstream 6 16
M1 - 6 -
M2 MP3 - 24 -
M3 - 192 -
01 - 6 -
02 Opus - u | -
Al - 6 -
A2 AAC - 24 -
A3 - 192 -

SpeechTokenizer [15] introduces a unified speech tokenizer tailored
for speech LMs, integrating HuBERT units as semantic teachers
in the first layer of RVQ. Descript Audio Codec (DAC) [13]
leverages advanced Snake activation from BigVGAN [21] and utilizes
a novel complex STFT discriminator at multiple time scales to further
enhance audio fidelity. We used the 16k and 24k sample rate models.
Lastly, SoundStream[22] uses RVQ in its encoder to represent audio
signals more efficiently and compactly, resulting in higher quality
reconstruction at lower bitrates'.

To more comprehensively compare the ability of codecs to retain
emotional traits, we also selected three legacy codecs for comparison:
MP3 [23], which is widely used for its efficient compression and good
sound quality at different bitrates; Opus [24], which is known for its
adaptability to a wide range of audio and low latency; and AAC [25],
which provides high fidelity and is commonly used for streaming and

'We used the
soundstream-pytorch

implementation from: https://github.com/kaiidams/



TABLE III: Datasets used in this study and their setting. Anno
represents the annotation process used; P and S represent primary
and secondary labeling scenarios, respectively. Speaker represents
the number of speakers in the dataset.

Dataset ‘ Language ‘ Setting ‘ Anno ‘ Speaker
CREAM-D English Acted P 91
IEMOCAP English Acted S 10

IMPROV English Acted S 12
MSP-PODCAST English Real-world P 2172+Unknown
BIIC-PODCAST Chinese Real-world P Unknown

NNIME Chinese Acted S 43

broadcasting. These legacy codecs help us benchmark neural codecs
against established standards.

C. Speech Emotion Recognition Datasets

To evaluate the codecs, we used six public datasets partitioned
by EMO-SUPERB [26]. These datasets are classified according to
their source (acted or real-world) and language (Chinese or English),
as shown in Table III. The datasets have two annotation scenarios:
Primary (P) requires each annotator to select only one emotion during
annotation, while Secondary (S) allows annotators to select multiple
emotions for a clip.

III. EXPERIMENTAL SETUP

A. Speech Emotion Recognition Models

In contrast to previous SER methods that perform single-target
prediction , we adopt a distribution-like representation to model the
multi-dimensional complexity of emotions, as suggested by [27].
Furthermore, to enhance the performance of the SER model, we incor-
porate label smoothing [28] into the emotion distribution, effectively
regularizing the classifier layer by setting the smoothing parameter to
0.05.

We adopted the SER model architecture from the S3PRL [29]
toolkit, which is based on a CNN-Self Attention network consisting
of three Convld layers, a self-attention pooling layer, and two linear
layers. We used a fixed learning rate of 10~ and the AdamW opti-
mizer [30] to train the SER model until the loss on the development
set stopped decreasing for 5 epochs. We used class-balanced cross-
entropy loss [31] to mitigate the impact of imbalanced labels in
emotion.

B. Evaluation Metrics

We used the macro-F} score [32] as the evaluation metric for
the SER task. Since the output of the SER model is a probability
distribution, the emotion prediction is successful if the corresponding
probability of the ground-truth label exceeds the threshold % for the
n-class SER model, following [27], [33].

C. Human Subjective Evaluation

To determine whether humans perceive emotions differently in
synthesized versus original speech, we conducted human subjective
listening tests. We randomly selected 45 audio samples from the well-
known emotion dataset IEMOCAP. We used three codecs, namely
Encodec, DAC, and the legacy codec Opus, to resynthesize the audio
at bitrates of 6kbps and 24kbps.

We hired evaluators from the Prolific platform to evaluate the
resynthesized audio. Each audio sample was evaluated by 5 male
and 5 female evaluators. We required evaluators to be from the US
and must have a past assignment acceptance rate above 90%. Each
evaluator was asked to answer three questions for each audio sample:
(1) select one or more emotions of the speaker from the pre-defined
emotions, the same process as in IEMOCAP; (2) rate speech quality
based on everyday speech communication on a scale of 1 to 5; (3)
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Fig. 2: SER performance (macro-F}) for different codecs on the
IEMOCAP dataset. The red dashed line represents the SER perfor-
mance of the original audio (the topline).

rate speech quality according to the degree of distortion on a scale
of 1to 5.

Annotators of the IEMOCAP dataset originally used both video
and audio to label multiple emotions. However, our study only
focused on audio. This difference may affect emotion perception.
Therefore, we also asked these evaluators to re-annotate the emotions
of the original audio to make a fair comparison.

After collecting annotations and ratings, we report average values
for speech quality and distortion factors. In terms of emotion, we
calculate the distributional label for each audio sample, and binarize
the label using a threshold in the same way as introduced in Sec. I1I-B
to measure the macro-F} score. We take the new-collected labels
elicited by audios as the ground truth and calculate the accuracy, and
define this as subjective emotion capacity.

IV. RESULTS AND DISCUSSION

A. Impact of Bitrate on Machine Emotion Recognition

Fig. 2 shows the emotion preservation capabilities of individual
codecs at different bitrates on the IEMOCAP dataset. Across most
codecs, whether neural or legacy, there is a consistent trend: emotion
preservation increases as the codec bitrate increases. It highlights the
direct impact of bitrate on the amount of voice information that can
be transmitted and retained. A higher bitrate is beneficial to retaining
more detailed emotional information. While lower bitrates often
compromise the retention of emotional information, some codecs
exhibit excellent emotion retention even at extremely low bitrates,
such as SpeechTokenizer and Academicodec. This indicates that
these codecs are particularly effective at preserving the integrity of
emotional information despite the limitations of lower bitrates. Of all
codecs, Soundstream is the worst at retaining emotional information,
showing the worst emotion recognition performance.

Legacy codecs (MP3, Opus, and AAC) generally demonstrate
effective retention of emotional information at higher bitrates, e.g.,
Opus_24kbps and MP3_192kbps perform well, approaching the
topline performance. However, all three legacy codecs perform poorly
at low bitrates. Of the three legacy codecs, AAC is the worst. In
comparison, neural codec DAC consistently outperforms all neural
and legacy codecs at the same bitrate of 24kbps, highlighting DAC’s
advanced design and effectiveness in retaining emotional information.
The superior performance of DAC may be attributed to two tricks:
the snake activation function and balanced data sampling during
training. DAC also performs well at 6kbps. In addition, Funcodec’s
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line represents the SER performance of the original audio (the topline).

performance under different bitrates is also good and stable. Our
results demonstrate that neural codecs are more suitable for retaining
the integrity of emotional information in bitrate-constrained environ-
ments.

B. Trend Across English Datasets

Next, we evaluate the emotional information retention of codecs
on three additional English datasets (CREMA-D, IMPROV, and POD-
CAST). Obviously, the same trends as in Fig. 2 can also be observed
in Fig. 3. This analysis extends the analysis on the IEMOCAP
dataset in Sec. IV-A, highlighting consistent trends in the emotional
information retention capabilities of codecs.

C. Variability Across Chinese Datasets

Fig. 4 and Fig. ?? in the Appendix show the emotion preservation
capabilities of various codecs at different bitrates on the Chinese
datasets BIIC-PODCAST and NNIME. Consistent with the trend in
the English datasets, higher bitrate codecs generally retain emotional
information better in the Chinese datasets; the DAC still provides
superior performance compared to other codecs of the same bitrate;
neural codecs SpeechTokenizer and Academicodec also maintain
good performance at lower bitrates; and legacy codecs are always
weaker than neural codecs.

While the overall trend is consistent, there are some differences
when comparing the performance of certain codecs on the English
and Chinese datasets in detail. In the case of Encodec, a significant
increase in emotional information retention with increasing bitrate
can be observed in the English datasets. However, this trend slows
down in the Chinese dataset NNIME and even decreases in the BIIC-
PODCAST dataset. Compared with English, emotional information in
Chinese has different phonetic and tonal characteristics, and the neural
codec may not have been specifically optimized for these differences,
causing the retention of emotional information to slowly increase or
even decrease as the bitrate increases.

Furthermore, specific codecs are trained on English-only data,
such as funcodec_en_libritts (F1 and F2), while conversely fun-
codec_zh_en (F3 and F4) is trained on mixed English and Chinese
data. From Fig. ??, we can see that on the Chinese dataset BIIC-
PODCAST, the codecs F3 and F4 trained on mixed English and
Chinese data are better at preserving Chinese emotional information
than their counterpart codecs F1 and F2 (F4 vs F2, F3 vs F1) trained
on English-only data. However, F3 did not beat F1 on the Chinese
dataset NNIME. This observation shows the importance of research
on codec training data settings in order to accommodate universal
representations of different emotional information across languages.

D. Specific Emotion Losses

As can be seen from Table IV, speech resynthesized through a
codec may lose some important emotional information, especially for
emotions that are challenging for SER models, such as disgust or
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Fig. 4: SER performance (macro-F}) for different codecs on the
NNIME Chinese datasets. The red dashed line represents the SER
performance of the original audio (the topline).

fear. For instance, the F7 scores for the fear emotion category on
the IMPROV and IEMOCAP datasets are only 1.86% and 9.58%,
respectively. The Fi scores for fear in the resynthesized speech
dropped by 57.22% and 18.45%, respectively, Significantly higher
than most other emotions. This shows that when the original audio has
low emotion recognition performance, any additional distortion from
the codec will have a pronounced impact. For the SER model, fear is
inherently a difficult emotion to identify. The substantial performance
drop highlights the inability of the codec to retain the emotional
information of fear, which poses a greater challenge to the SER
model. In addition to fear, other emotions such as depression and
sadness also experience SER performance degradation when speech
is resynthesized through these codecs. This highlights the codecs’
shortcomings in retaining complex and subtle emotional information.
While codecs are proficient in compressing and resynthesizing speech,
they struggle to preserve the nuanced emotional cues needed for
accurate emotion recognition, especially for more complex emotions.
This demonstrates the need for further optimization and enhancement
of codec models to better preserve the emotional integrity of resyn-
thesized speech.

E. Human Subjective Listening Tests

This section provides the subjective evaluation results. The original
audio samples are randomly selected from the IEMOCAP dataset.
Fig. 5 shows the Mean Opinion Score (MOS) of the original audio
and the codec-resynthesized audio. The original audio has the highest
MOS. The 24k bitrate codecs (Encodec_24kbps and DAC 24k) result
in a slight drop in MOS, but still maintain a score close to that of



TABLE IV: SER performance (macro-F;) degradation of resynthesized speech relative to the original speech. Positive values mean
improvement in SER performance. Emotions considered include depression (P), frustration (T), anger (A) sadness (S), disgust (D), excitement
(E), fear (F), neutral (N), surprise (U), and happiness (H). The Ori row represents the performance of the original audio. The bold text indicates
the emotion with the highest, the second-highest, and the third-highest level of average degradation.

| IMPROVS | IEMOCAP
ID| P T A S D E F N U H | T A S D E F N S H
Ori.| 38.16 53.34 4791 57.33 1435 57.07 186 84.04 29.12 69.21]|69.27 59.70 61.36 00.89 55.10 9.58 67.54 25.19 49.28
U [-50.49 -11.88 -8.68 -19.15 -35.13 2.05 -70.65 -0.51 -6.90 -3.37|-193 -3.06 -5.62 -30.80 -420 -7.76 -2.67 -12.10 -6.99
C [-42.27 -822 -596 -13.03 -25.01 1.37 -73.60 -0.48 4.85 -245|-1.81 -479 -890 -25.63 -5.03 -20.83 -6.77 -8.13 -7.44
S [-23.12 -539 -5.61 -593 -24.68 036 -48.77 -031 -341 -1.88|-137 -1.67 -407 -3.81 -2.62 -11.04 -1.78 -7.79 -4.36
D1 |-758 -1.75 -137 -2.06 -344 0.64 -2391 -0.16 -1.76 -0.47|-0.31 -0.19 -0.72 -8.84 -0.47 -297 -040 022 -0.72
D2|-1.84 -0.80 -1.21 -0.37 -982 0.65 -21.38 -0.08 128 -0.14|-0.02 -0.40 -0.40 -2797 -031 -1.81 -0.13 0.16 -0.30
El |-88.21 -42.40 -22.08 -68.06 -70.39 -7.00 -94.65 -16.25 -28.31 -6.26 | -4.91 -10.47 -37.24 -19.09 -12.82 -41.13 -28.06 -34.14 -18.71
E5 |-43.75 -6.24 -2.94 -19.94 -39.15 1.84 -57.34 -122 -394 -339|-143 -390 -12.28 -10.62 -5.65 -18.05 -6.68 -10.58 -5.62
F1 |-12.57 -0.54 -1.63 -3.10 -10.31 1.15 -26.03 -0.07 -0.07 -0.82|-0.72 -047 -1.12 -597 -1.73 -423 -055 -5.07 -1.48
F3 |-11.86 -1.29 -2.03 -3.25 -11.97 1.08 -3095 -0.10 3.63 -0.61|-1.02 -0.98 -1.34 -24.16 -1.78 -9.88 -1.08 -1.00 -1.70
M1 |-76.03 -62.86 -48.19 -57.12 -88.15 -14.26 -94.21 -15.82 -4.42 -8.45|-16.58 -20.97 -23.86 1.29 -17.02 -54.93 -14.26 -33.99 -28.78
M3|-8.07 -533 -7.00 -2.82 -136 -11.41 -4098 049 -942 -2.08|-0.21 -0.10 -3.99 -28.14 -1.54 0.28 -0.63 -5.75 -541
O1 |-87.75 -44.84 -27.26 -68.92 -81.77 -12.65 -92.32 -15.93 -35.08 -7.74|-10.67 -14.65 -19.91 -19.66 -14.21 -37.22 -7.63 -33.98 -21.71
02 -23.29 -532 -6.04 -6.27 -544 -698 -49.64 0.51 -11.87 -2.24|-0.28 -1.18 -4.34 -18.19 -1.82 -6.20 -1.46 -7.46 -7.00
Al |-57.40 -61.04 -52.67 -38.45 -94.45 -11.11 -95.81 -14.95 -15.95 -6.56|-10.71 -15.80 -19.79 -12.93 -17.42 -49.14 -11.81 -30.28 -25.50
A3 |-15.53 -6.24 -8.17 -5.52 -8.68 -10.30 -38.00 0.21 -19.70 -1.83|-1.29 -3.92 -10.34 -46.57 -3.02 -11.84 -2.71 -17.44 -9.60
Avg|-36.65 -17.61 -13.39 -20.93 -33.98 -4.30 -57.22 -431 -8.74 -322|-3.55 -550 -10.26 -18.74 -5.98 -18.45 -5.77 -13.82 -9.69
. . between subjective human listening tests and the objective assess-
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Fig. 6: Subjective emotion retention capacity (macro-Fp) for six
codecs.

the original audio. In contrast, the MOS for the 6k bitrate codecs
drops significantly, except for DAC 16k (as shown in Table II, its
bitrate is 6kbps), which maintains a high MOS. Opus_6kbps has the
lowest MOS in this evaluation. These results align with the objective
evaluation results in the previous sections.

Fig. 6 shows the human SER performance on the codec-
resynthesized audio. Again, we can see that DAC 24k and DAC
16k perform well, and DAC 24k achieves the best performance.
Encodec_24kbps is worse than its lower bitrate counterpart En-
codec_6kbps, and Opus_24kbps is also worse than its counterpart
Opus_6kbps. Surprisingly, Opus_6kbps performs well in this human
SER evaluation. The reason still needs further study. The discrepancy

ments presented in Fig. 2 is emphasized, and this inconsistency
suggests that objective metrics may not fully capture elements of
human perception of emotional content in language. Further research
into the perceptual aspects of audio quality and emotion recognition
is recommended to address this issue.

V. DISCUSSION AND LIMITATION

Existing neural codecs are mainly trained on English and Chinese
datasets. However, there are thousands of spoken languages around
the world. Whether existing codecs can be generalized to other
languages and how to train codecs that preserve multilingual emotion
information are unsolved issues.

While subjective evaluations provide valuable insights, current
evaluators are limited to a small number of people. Future research
should aim to include a more diverse group of evaluators to account
for different emotional perceptions across age groups, cultures, and
backgrounds.

Due to limited scope, this work did not consider how the inter-
activity and context of a conversation might affect the effectiveness
of emotion preservation. Future research should explore how codecs
perform in interactive dialogue systems, where context and conversa-
tional history play crucial roles in emotion recognition and response
generation. We will also implement more comprehensive subjective
testing protocols and refine objective evaluation metrics to better align
with the framework for assessing human perceptual differences.

VI. CONCLUSION

This work provides insights into the emotional information preser-
vation capabilities of neural codecs. We provide different perspectives
to evaluate codec performance. We confirm that codecs with higher
bitrate preserve more emotional information. DAC performs the
best among all compared neural codecs, while AcademiCodec and
SpeechTokenizer can preserve a considerable amount of emotional
information at limited bitrates. Legacy codecs perform worse than
neural codecs at low bitrates. Furthermore, a codec trained with
Chinese and English data may have a limited improvement in Chinese
emotion information preservation capacity compared to a codec
trained with only English data. We find that the resynthesis of speech
by neural codecs reduces emotional information such as sadness,
depression, fear, and disgust. Our future work will train neural codec
models to preserve emotional information across diverse language
usage contexts.
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