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Abstract—Since its introduction, SpecAugment has become a
default augmentation technique in many End-to-End Automatic
Speech Recognition systems. It is computationaly efficient and
provides significant performance boost without increasing train-
ing time due to its online nature. Time-masking and Frequency-
masking, the operations that contribute the most to the per-
formance gain in SpecAugment, replace the time-stamp and
certain frequency bands with either zero or mean value of the
input features. In this paper, we propose a framework called
Generalized SpecAugment (Gen-SA), where masked values can be
replaced with any valid magnitude value. In our implementation
of the Gen-SA, we replace the time and frequency mask values
in the input Mel-Spectrum with scaled Mel-Spectrum of a white
noise signal. Gen-SA has similar computational complexity as the
SpecAugment while providing significant gain in robustness and
uses just one additional signal for augmentation. Experiments
on Librispeech, Aurora-4 and TED-LIUM datasets show that
Gen-SA consistently outperforms baseline SpecAugment with
similar parameters, provides better cross-dataset performance
and improves robustness against the additive noise.

I. INTRODUCTION

Data augmentation has been one of the key contributors in
improving robustness of Automatic Speech Recognition (ASR)
systems and making them more robust to various degradation
conditions. As ASR models become large with more layers and
more number of parameters, they tend to overfit even with large
amount of training data. Data augmentation helps in diversi-
fying the effective training data by applying perturbations to
training utterances. Many data augmentation techniques have
been proposed and studied for ASR task. We survey some of
these techniques here.

One of the earliest data augmentation techniques in ASR
was introduced in [1] that applies Vocal Tract Length Pertur-
bations on training utterances. Speed Perturbation was used in
[2] and has become an integral part of modern ASR systems.
Synthesized noisy speech was used in [3]–[5] by adding noise
signals to training utterances to improve noise robustness of
ASR system. Similarly, [2], [6] uses room impulse responses to
simulate conditions suitable for far-field and reverberant ASR.
TTS system are used to synthetically generate speech from
text in [7], [8] to train the ASR system. All these techniques
are offline techniques in the sense that some processing is

applied on the audio signals/features and the processed audio
signals/features are stored for training. These techniques are
resource and time consuming. This renders them difficult to use
in large-scale tasks or in resource constrained environments.

To overcome the limitations of the above approaches, many
online augmentation approaches have been proposed where
augmentation is applied on-the-fly on training samples. Fea-
ture dropout was used in [9] and examined extensively in
[10] in the context of Multi-stream ASR system training.
[11], [12] presents an approach where channels in CNNs
are systematically dropped while training. SpecAugment pro-
posed in [13] has become an effective augmentation technique
that provides significant performance improvement in End-to-
End ASR systems. SpecAugment consists of Time-warping,
Time-Masking and Frequency-Masking operations. It is an
attractive augmentation technique due to its simplicity, low
computational complexity, online nature and the performance
improvement it provides. The extension of SpecAugment on
large-scale dataset [14] shows that SpecAugment scales well
with large datasets. It has also been applied in hybrid ASR
systems, e.g., in BLSTM hybrid HMM-based ASR in [4],
[15], [16], and also in frame-level hybrid ASR in [17] with
significant success.

In SpecAugment, the most contributing factors are the Time-
Masking and the Frequency-Masking operations applied on
the input Mel-spectrum. The masks are selected based on a
random process as per decided policy and masked values are
replaced with either 0 or mean value of the Mel-spectrum.
In [18] SpecSwap was proposed, where Time and Frequency
values are randomly swapped in the input Mel-spectrum.
Here, mask values are swapped with different portion of the
input spectrum for both Time and Frequency values. The
performance of SpecSwap was comparable to, though not
better than SpecAugment on medium scale dataset. However,
SpecSwap demonstrates that the mask values in Mel-spectrum
can be replaced by values other than 0 or mean value.

In this paper, we propose Generalized SpecAugment where
Time and Frequency mask values can be replaced by any real
values. In practice, the mask values can be replaced with Mel-
spectrum of any signal. The signal can be a noise signal, speech



of another speaker, different utterance of the same speaker,
different part of the same speaker, etc. Hence, Generalized
SpecAugment may require additional signal(s) for augmen-
tation. Such formulation makes Generalized SpecAugment a
framework using which augmentation policies like SpecAug-
ment and SpecSwap can be obtained as a special case. This
paper implements a form of Generalized SpecAugment where
we use white noise signal to mask certain portions of the input
Mel-spectrum. We replace the masked portion of Mel-spectrum
with scaled Mel-spectrum channels of a white noise signal.
This makes the augmentation implementation simpler and only
one additional signal is required for augmentation. By scaling
the channels of white noise Mel-spectrum, more variability can
be introduced in augmented Mel-spectrum with computational
complexity comparable to SpecAugment. We show that this
realization of Generalized SpecAugment results in better per-
formance gain than SpecAugment using Librispeech, Aurora-
4 and TED-LIUM datasets. Our experiments also show that
the proposed approach is more robust against additive noise
compared to SpecAugment and it performs better on cross
dataset evaluations.

II. GENERALIZED SPECAUGMENT

A SpecAugment policy includes composition of three aug-
mentation operations: Time-Warping, Time-Masking, and Fre-
quency masking. We focus on Time-Masking and Frequency-
Masking for our formulation. These operations can be sum-
marized as follows:

• Time-Masking involves masking t consecutive time
stamps [t0, t0 + t}. Here, t is chosen from a uniform
distribution [0, T ] and T is Time-masking parameter. t0
is chosen from [0, τ − t], where τ is the length of the
signal.

• Frequency-Masking involves masking f consecutive fre-
quency channels [f0, f0 + f}. Here, f is chosen from a
uniform distribution [0, F ] and F is Frequency-Masking
parameter. f0 is chosen from [0,M −f}, where M is the
number of Mel channels.

Both these operations can be applied multiple times on
Mel-spectrum based on augmentation policy. The number of
Time and Frequency masks is controlled using parameter
n mask. For both Time-Masking and Frequency-Masking,
the masked portion is replaced by either 0 or mean value
of the Mel-spectrum. Hence, the Mel-spectrum of a signal x
(MFBEx(t, f)) after SpecAugment masking operations can
be written as follows.

MFBEx(t0 : t0 + t, f) = mean(MFBEx), (1)
MFBEx(t, f0 : f0 + f) = mean(MFBEx). (2)

In practice, when the log-Mel-spectrum features are nor-
malized the mean value becomes zero. It makes SpecAugment
computationally inexpensive, easier to implement, and it does
not require any additional signals. The mask values can be
applied online while training and for each training epoch, the

network will be presented with different versions of one input
Mel-spectrum. This property makes SpecAugment very attrac-
tive to use, given the advantage of computational complexity
and performance improvement.

However, in principal, the masked portions can be replaces
with any valid values. Mathematically, valid values for mask
can be any real number. For practical purposes the mask value
can be chosen as Mel-spectrum of any signal that shares similar
properties of speech signal, such as sampling rate, bit rate
etc. With this modification, we come up with Generalized
SpecAugment as follows:

MFBEx(t0 : t0 + t, f) = MFBEy(t0 : t0 + t, f), (3)
MFBEx(t, f0 : f0 + f) = MFBEy(t, f0 : f0 + f), (4)

where MFBEy(t, f) is the Mel-spectrum of an exter-
nal signal y(t) that is used to replace the masked values.
MFBEy(t, f) can be Mel-spectrum of any signal includ-
ing, but not limited to, noise signal, speech of a different
speaker, different utterance of the same speaker, etc. By this
modification, SpecAugment now requires additional signals for
masking. At training time, MFBEy(t, f) can be selected for
each example or each batch from a pre-loaded set of signals in
an online manner. This increases the computational complexity
slightly. However, choosing mask values other than 0 or mean
values provides more variations of a training example while
training the network. With MFBEy(t, f) = 0, we obtain the
original SpecAugment formulation.

In this work, we select y(t) as a white noise signal. We
scale the Mel-spectrum of white noise signal MFBEwn(t, f)
by multiplying values of each Mel channel with a value in
0− 1. This scaling makes certain Mel channels have different
weights randomly for each sample as follows:

MFBEx(t0 : t0 + t, f) = MFBEwn(t0 : t0 + t, f) ∗ S, (5)
MFBEx(t, f0 : f0 + f) = MFBEwn(t, f0 : f0 + f) ∗ S, (6)

where S1×M ∈ [0, 1] and ∗ denotes element-wise multiplica-
tion of S with each frame of MFBEwn.

Figure 1 shows the comparison of SpecAugment and Gen-
eralized SpecAugment with scaled white noise Mel-spectrum.
As it can be observed, the Generalized SpecAugment approach
provides more variations in input Mel-spectrum. The scaling
of white noise Mel-spectrum channels ensures that for each
iteration, different time stamps and frequency stamps are
masked with different values. Moreover, by using white noise
for augmentation, Mel-spectrum of only one additional signal
is required, that can be pre-loaded for computation. This
makes the computational complexity of the proposed method
similar to SpecAugment. Generalized SpecAugment has all the
desirable properties of SpecAugment such as ease of imple-
mentation, online nature, and low computational complexity.

Using Generalized SpecAugment in training of an Acoustic
Model (AM) can provide better generalization for unseen test
utterances. SpecAugment forces AM to underfit the training
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examples by introducing degradation to the input features.
Generalized SpecAugment increases the degradation amount
by many-fold due to its large span of values. Moreover, using
white noise signal can provide some level of noise robustness
as well. Here, masking the values is identical to adding band-
limited white noise as done in [5] with −∞ dB Signal-to-Noise
Ratio (SNR) in masked portion and ∞ dB SNR elsewhere. We
study generalization as well as noise robustness of Generalized
SpecAugment with scaled white noise features in following
Section.
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Fig. 1. (a) Mel-spectrum of an utterance, Mel-Spectrum after applying (b)
SpecAugment, and (c) Generalized SpecAugment with scaled white noise.

III. EXPERIMENTS

A. Dataset and ASR system

We perform all experiments on Librispeech [19] dataset
using ESPNet [20] toolkit to develop ASR systems. We
use Librispeech 960h train set to train Transformer Acoustic
Models (AM) in ESPNet using single NVidia RTX 2080 Ti
GPU. The AM is trained using ESPNet Librispeech recipe
with following modifications to use single GPU:

• Transformer AM [21], [22] with 12 encoder and 6 decoder
layers is used. 4 attention heads are used in each layer
with 256 attention dimension.

• The model is trained using 80 dimensional Mel-filterbank
energies and pitch features extracted using Kaldi [23].
Output of the network is 5000 sub-word units extracted
using Sentencepiece [24] library. We do not use 3-way
speed perturbation, but we expect that using speed per-
turbation will further improve performance of the system.

• We use default configuration parameters in ESPNet trans-
former model1 available with librispeech recipe and mod-
ify it for single GPU. We increase batch size to 64, and
set accum-grad to 2. transformer-lr was set to 5.0 and
we train the network for 70 epochs. All other training
parameters were kept as per default values.

• We use pre-trained sub-word token-based large LSTM
Language Model (LM) available from ESPNet model
repository2.

• Decoding is done using beam size 10, ctc-weight is set
to 0.4, and lm-weight is set to 0.6.

• For Gen-SA, we take a white noise signal and compute
Mel-filterbank energies and pitch in the same way as train
utterances. We then normalize the features using CMVN
stats computed from the training data. We modify the SA
implementation in ESPNet by pre-loading the features of
white noise signal and replace masked values with scaled
white-noise features.

• Augmentation parameters are as follows for both SA and
Gen-SA:

– Time warping: max time warp=5
– Frequency masking: F=30, n mask=2
– Time masking: T=40, n mask=2

The model was tested on librispeech dev (dev-clean, dev-
other) and test (test-clean, test-other) sets. To demonstrate the
robustness of our approach we test the models on corrupted
versions of librispeech dev and test sets. We add babble
noise with 15, 10, and 5dB SNR using kaldi noise addition
functionality and test the performance of various augmentation
techniques. Moreover, we train AM on Aurora-4 dataset [25]
to further analyze the noise robustness. For Aurora-4 dataset,
we use pre-trained 65,000 vocabulary word LM with available
with ESPNet for WSJ task3. We also perform cross-dataset
evaluation on TED-LIUM [26] dev and test set using AM
trained on Librispeech. We report CER and WER for various
experiments.

B. Results

1) Baseline results: Table I shows the baseline results in
terms of CER and WER with various augmentation strategies.
It can be observed from Table I that incorporating SA in
training pipeline significantly improves performance of ASR
system over not using any augmentation. Gen-SA improves
over SA across all test-sets, with the most improvement seen
in the dev-other (0.4% absolute) set. This shows that replacing
mask values with scaled white noise filterbank values improves
the ASR performance over replacing mask values with 0.
Figure 2 shows the validation accuracy for SA and Gen-SA
starting from epoch 10 to 70. It can be observed that Gen-
SA provides better validation accuracy as training progresses
and indicates that Gen-SA provides better generalization in
performance.

1espnet/egs/librispeech/asr1/conf/tuning/train pytorch transformer.yaml
2LSTM LM for Librispeech
3WSJ LM for Aurora-4 task
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TABLE I
BASELINE RESULTS WITH VARIOUS AUGMENTATION TECHNIQUES.

Aug. dev-clean dev-other test-clean test-other
CER WER CER WER CER WER CER WER

no-SA 4.1 3.1 10.9 8.6 4.3 3.5 10.8 8.6
SA 4 2.9 9.5 7.1 4.2 3.2 9.4 7.4
Gen-SA 3.9 2.8 9.1 6.8 4.2 3.2 9.3 7.3

Fig. 2. Validation accuracy on Librispeech dev sets from epoch 10-70 for
SA and Gen-SA.

TABLE II
RESULTS OF ABLATION STUDY FOR SPECAUGMENT AND GENERALIZED

SPECAUGMENT

dev-clean dev-other test-clean test-other
SA
- Time masking 3.1 7.6 3.4 7.5
- Freq. masking 3 7.8 3.2 7.8
Gen-SA
- Time masking 3.3 7.5 3.4 7.5
- Freq. masking 3.1 8.1 3.4 8.1

We perform ablation study as per [13], where we remove one
component at a time from augmentation pipeline to observe
contribution of each operation. Results of the ablation study
are tabulated in Table II. As observed in [13], we find that
for SA and Gen-SA both, Frequency masking contributes the
most in performance improvement. In the case of Gen-SA, the
contribution of frequency masking was found to be even more
significant than SA. Removing Time masking had little impact
on the overall performance of both SA and Gen-SA.

2) Cross-dataset performance: To observe the generaliza-
tion capabilities of the augmentation techniques, we test the
performance of ASR systems trained on Librispeech dataset
on other out-of-domain dataset, namely, TED-LIUM. We use
dev and test set of TED-LIUM for cross-dataset evaluation.
We perform decoding using trained model and same decoding
parameters without any LM. Table III shows the results of this
cross-dataset evaluation. It can be observed that SA greatly
improves cross-dataset performance over no augmentation.
This suggests that SA has good generalization capabilities in

TABLE III
CROSS-DATASET RESULTS FOR VARIOUS AUGMENTATION TECHNIQUES.

THE AM IS TRAINED ON LIBRISPEECH TRAIN SET AND PERFORMANCE IS
EVALUATED ON TED-LIUM DEV AND TEST SET IN TERMS OF CER AND

WER WITHOUT ANY LM.

tedlium-dev tedlium-test
CER WER CER WER

No-SA 21 19.4 19.8 18.9
SA 20 18.3 18.7 17.4
Gen-SA 19.5 17.9 18.3 17

TABLE IV
RESULTS OF VARIOUS AUGMENTATION TECHNIQUES FOR NOISY TEST SET.

BABBLE NOISE WAS ADDED WITH 15, 10, AND 5DB SNRS IN
LIBRISPEECH TEST-CLEAN AND TEST-OTHER UTTERANCES TO CREATE

NOISY TEST SET.

clean 15 dB 10 dB 5 dB

No-SA test-clean 3.5 5.8 14.1 40.4
test-other 8.6 18.1 34.8 66.2

SA test-clean 3.2 4.6 8.8 26.9
test-other 7.4 12.7 24 51.8

Gen-SA test-clean 3.2 4.4 7.9 23.2
test-other 7.3 11.8 21.2 46.2

terms of cross-dataset performance. Gen-SA improves over
SA significantly, showing superior generalization capabilities
compared to SA. This observation suggests that the choice
of masking value in SA not only improves same dataset
performance, but also improves cross-dataset performance and
provides better generalization in ASR system.

3) Robustness to noise: We now evaluate noise robustness
of various augmentation techniques. Both SA and Gen-SA
introduces corruptions in training MFBEs by masking certain
portion. Equivalently, masking can be represented as adding
noise with −∞ SNR in the masked portion, since no signal
magnitude is present in the masked portion. Such corruption
may introduce noise robustness in the trained model. Table IV
shows the results on librispeech dev and test set corrupted with
babble noise with various SNRs. As hypothesized, SA indeed
introduces significant noise robustness in the trained model
over no augmentation. In this case also, Gen-SA provides
the best performance over both the models. The difference in
performance of SA and Gen-SA increased with the increased
amount of noise in test utterances. Table V shows results on
Aurora-4 dataset. Gen-SA provides significant performance
improvement over SA on Aurora-4 as well. Especially, on test
set B (additive noise) and D (channel degradation + additive
noise) the performance difference is observably large. This
further bolsters the superior generalization capability of the
proposed approach for noisy conditions.
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TABLE V
RESULTS OF VARIOUS AUGMENTATION TECHNIQUES ON AUROA-4

MULTICONDITION DATASET.

A B C D Average
no-SA 9.5 16.6 15.6 29.3 21.5
SA 4.7 7.5 6.2 15 10.4
Gen-SA 4.7 7.1 6.1 14.7 10.1

IV. CONCLUSIONS AND FUTURE WORK

We propose a generalized version of SpecAugment (SA)
where Time and Frequency mask values can be any value,
not just 0 or mean of the features. For practical purposes
the mask values can be replaced with features of any other
signal. In this paper, we present one realization of Generalized
SpecAugment (Gen-SA), where we replace the masked region
with scaled features values of white noise signal. The results
of our experiments show that Gen-SA performs better on
Librispeech dev and test datasets compared to SA for similar
augmentation parameters. Moreover, results on noisy version
of Librispeech dev and test set, and results on AURORA-4
and TED-LIUM dataset suggest that Gen-SA provides better
noise robustness and cross-dataset performance compared to
SA. This performance improvement requires only one external
signal and it has similar computational complexity as SA. We
show that replacing mask values in SA with values other than 0
or mean value can provide significant performance boost and
robustness to the acoustic model. In future, we plan to use
other signals, such as speech of different speaker, more noise
signals, music signals, etc. to replace mask values and analyze
the robustness of the ASR system to other perturbations and
degradation conditions.
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