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Abstract—In this paper, we investigate the application of
large language models (LLMs) for the recovery of corrupted
bitstreams, specifically focusing on JPEG image data. We propose
a byte-based GPT-2 model that directly processes byte sequences
and predicts the subsequent byte, enabling its application to
JPEG bitstream recovery. This architecture allows the model to
capture the relationships between consecutive byte data within the
bitstream of a JPEG image, such that the model can restore the
bit-flip errors due to the damaged storage and malicious attack.
We evaluate the model’s performance on bit-flip JPEG datasets
with varying bit error rates (BERs). The experimental results
demonstrate the model’s ability to implicitly learn patterns in the
bitstream and correct erroneous bytes, showcasing the potential
of LLMs in binary processing tasks. Our findings highlight the
promise of byte-based LLMs in addressing data corruption issues
and open up new avenues for research in this domain.

I. INTRODUCTION

In the face of increasing transmission bandwidth demand
for streaming media, audio and video are transmitted under
various lossy compression techniques [1], such as MPEG-4 [2]
and JPEG [3]. These techniques provide the codec to compress
the data into a stream of bytes at a specified compression ratio
and decompress it back into images and audio. In scenarios
where transmission and storage may be interfered with or
intentionally attacked [4]–[6], bit flips or missing will occur
in the stream which corrupts blocks or the entire bitstream.
Recovering data from a corrupted bitstream is a challenging
task. Typically, based on the optimization principle, the data
segments in the bitstream of a lossy compression method
do not contain redundant data for error correction and use
irregular lengths and code words for different data[7].

On the one hand, researchers have focused their problem-
solving efforts on coding techniques. Modern error correcting
codes (ECC) such as LDPC [8] are used in wireless transmis-
sion and digital video broadcasting controlling errors in data
transmission. Message-digest algorithms such as MD5 [9]are
used for verifying data integrity and creating digital signatures.
Other researchers have proposed models to extract pattern and
structural features from the correctly decoded portion of the
bitstream, complementing the image or interpolating it [10].
Nevertheless, corruption caused by bit flips or missing bits
often results in relatively long segments of data that cannot be
decoded. Repair of decoded content relies on the temporal and
spatial continuity of the data, which is not always satisfactory.

In this work, we modified the GPT-2 [11] model to accept
a sequence of bytes as input and predict the next byte. We

intend to use the GPT-2 model for JPEG bitstream restoration.
The idea is inspired by the fact that image bitstreams in JPEG
format have a fixed metadata structure [3], and if the byte
sequences in data segments are considered as statements, the
codebook in the metadata defines all the semantics recurring in
the bitstream. We modeled bit-flip corruption on JPEG image
bitstream with existing image datasets such as ImageNet [12]
and CIFAR-10 [13]. Trained on these datasets, our proposed
binary model successfully recovers a portion of corrupted files.
To further evaluate the performance, we restricted the bitstream
corruption to occur in different regions and evaluated the model
at different bit error rates (BERs). The results show that LLM
can capture the relationship between stream metadata and data
segments.

Overall, this paper makes the following contributions:
• We adopt Large Language Models (LLMs) to process byte

sequences directly and predict the subsequent byte. The
proposed byte-based GPT-2 model can be applied directly
to the task of JPEG bitstream recovery.

• We evaluate our method on bit-flip JPEG datasets. Ex-
perimental results show the potential of the GPT-2 model
in this field. To the best of our knowledge, this marks
the first instance of utilizing an LLM to restore corrupted
bitstreams.

II. RELATED WORK

JPEG structure. The file bitstream of JPEG format is
partitioned into two parts: the metadata segment and the image
data segment. The image data is compressed by Discrete
Cosine Transform (DCT) and then converted into a variable-
length coding structure after quantization, run-length encoding
(RLE), and Huffman coding as shown in Fig. 1. The metadata
stores the important parts such as the Huffman coding table,
quantization table, etc., which accounts for a small percentage
of the whole bitstream. The data segments are sequence-
dependent, so bit-flip and missing errors will seriously interfere
with decoding, resulting in image corruption or even the
inability to read the entire bitstream. Image corruption can
happen in a variety of patterns.

Bitstream restoration. Much of the previous work has
focused on using techniques for specific codecs for conceal-
ment or fixing. Error concealment is a common decoder-side
post-processing technique used to repair erroneous regions
in decoded videos [14], [15]. It can be divided into several



Fig. 1. The structure of JPEG bitstream.

types, including spatial, temporal, and hybrid spatiotemporal
methods, covering both bitstream and pixel levels [15], [16].
In recent years, deep learning-based methods usually assume
traditional damage patterns and use experimental masks to
simulate stripes or block losses [14], [17]–[19]. However, this
approach is not suitable for recovering videos with damaged
bitstreams because the damage caused by actual packet loss is
often difficult to predict and has no regularity. The approach in
[20] constructed a robust decoder that attempted to skip over
erroneous blocks and parse the remainder of the bitstream.
The parsed corrupted images were restored using a two-stage
compensation and alignment framework.

Byte models. From early LSTM to today’s language models
based on the Transformer architecture [21], they play a vital
role in understanding, generating human language, and sim-
ulating intelligence. Text tokenization breaks down text into
smaller units (such as words or subwords) as model input
[21]. The Generative Pre-trained Transformer (GPT) model
marks a major advancement, utilizing self-supervised learning
and next-token prediction pre-training to capture the structure
and semantics of language. Researchers are also exploring
byte-level encoding methods to improve the performance of
existing models. For example, compressing byte sequences
using language models [22] offers new insights into leveraging
large pre-trained models [23]. Byte-level byte pair encoding
(BBPE)[24] has shown promise in enhancing multilingual
model pre-training and machine translation [25]. ByT5 [26]
builds upon this by processing byte sequences with a standard
Transformer model, generalizing an unlabeled encoding ap-
proach for improved noise robustness and spelling sensitivity
in multilingual scenarios.

III. OUR METHOD

In this section, we describe the byte-based GPT-2 modeling.
Processing data from the byte level leads to a model with high
granularity and extremely long sequences. The computational
effort of self-attentive scaling in Transformer-based models
grows quadratically with the length of the sequence [27]. To
avoid excessively long sequence lengths, bytes are partitioned

<eop>

<eop>

<eop>

<eop>

ff

61

8f

8e

6c

ec

42

7a

ab

6

44

<eop>

···

0

1

2

N

Pa
tc

h-
Le

ve
l T

ra
ns

fo
rm

er
 D

ec
od

er

<eop>

<eop>

<eop>

ff

61

8f

6c

ec

42

···

96

b6

a2

By
te

-L
ev

el
 T

ra
ns

fo
rm

er
 D

ec
od

er

<eop>

<eop>

<eop>

<eop>

ff

61

8f

8e

6c

ec

42

7a

···

···

Li
ne

ar
 P

ro
je

ct
io

n 
La

ye
r f

or
 F

la
tte

ne
d 

By
te

 P
at

ch
es

96

b6

a2

7e

Byte 
Patches

Patch Embeds & 
Position Embeds

Patch Features & 
Input Bytes

Output 
Bytes

Fig. 2. The structure of byte-based two-layer GPT-2 model.

into patches in a multi-layer transformer, referring to the work
of Wu et al. [27].

As shown in Fig. 2, the byte-based GPT-2 model contains
three parts, the linear projection layer followed by positional
coding to the sequence, the patch-level decoder, and the byte-
level decoder.

Bitstream Preprocessing. In a bitstream, data is not always
organized by bytes. There are many semi-byte blocks and
flag bits in different bitstreams (e.g., communication proto-
cols, standard file types, CPU states, etc.). In variable-length
bitstream, at the end of the file, bits often cannot be rounded up
to a byte, and padding is required to fill up the data. For a se-
quence of bytes (bitstream) B = [b0, b1, b2, b3, ..., bT−1] , bi ∈
Z256 = {0, 1, 2, ..., 255} of length T , we pad 8−|bT−1| zeros
at Byte bT−1.

The direct use of B as input leads to long sequence lengths,
and to solve this problem, inspired by previous studies[20],
[28], we split the B into patches with a certain size S, forming
a sequence of patches P = [p1, p2, ..., pK ] with the length of
K, where K =

⌈
T
S

⌉
. To locate the endings of the bitstreams,

noting that the common data file storage formats usually
have a start-of-file marker and an end-of-file marker, we add
start-of-patches (SOP) and end-of-patches (EOP) marker to
the beginning and end of the byte sequence. The SOP and
EOP markers share one single symbol, each occupying a byte
position. A special patch is formed by adding S markers to
the beginning to indicate that this is the start patch, and at the
end we need to add a sufficient number of markers to indicate
that this is the end patch, and the number of patches to add is
S +Mod(−K,S).

Linear Projection Layer. Firstly, there are only 256 hex-
adecimal digits that can be represented by a byte, so a byte can
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be represented by a one-hot vector of length 256, and adding a
symbol to stand for the EOP marker gives a length of 257. A
patch contains S bytes, which can be represented as a matrix
of S×257. This matrix is flattened to a vector of length S×257
and linearly weighted to perform token embedding on patches.
For error correction type applications, the byte vector will be
in Gray code order. For each input patch, the linear projection
layer maps the sparse input vector to a dense vector D of size
(S,H), with H being the size of the hidden layer, and this
process can be formulated as follows:

Di = Vi ·Wlinear, 1 ≤ i ≤ K (1)

where Wlinear denotes the weight matrix of the linear
projection layer.

Byte Decoder. We used two layers of transformer decoders
to make predictions for positionally encoded patches and
bytes, respectively. First, the patch-level transformer makes
predictions based on the sequence of embedded patches to
get predicted features for the predicted patches. Then byte-
level decoder predicts the next byte based on the previous
patches’ prediction features and the sequence of bytes within
the current patch. Considering the existence of byte-level
semantics between codewords in the byte stream, the com-
putations performed at the byte decoder are not independent
for each patch, unlike the work of Wu et al. [27].

Loss Function. Our goal is to predict the next byte of the
sequence and try to keep it consistent with the uncorrupted se-
quence, given the existing corrupted sequence, which requires
us to adopt a generative modeling framework for the process.
For a sequence of bytes B = {b1, b2, b3, ..., bT } of length T ,
the log-likelihood of the next byte needs to be maximized, so
the loss function can be defined as:

L (Θ) = −
T−1∑
i=1

logp(bi+1|b1, b2, b3, ..., bi; Θ) (2)

where Θ denotes the model parameter p(·) denotes the con-
ditional probability distribution of the next byte prediction.
bitstream restoration is a special case of generative modeling,
where the model predicts bytes consistent with the original
content in most cases. In this case, not all bytes in the sequence
are meaningful, and the sequence may have potential semantic
sparsity, which remains to be investigated.

Inference. For inference, the patches predicted by the model
are unwrapped and the padded zero bits at the end of the
bitstream are removed to obtain the predicted sequence.

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: For bitstream corruption, there is no publicly
available dataset other than a benchmark for video bitstream
corruption recovery [29]. To evaluate the model in this paper,
we use the ImageNet and CIFAR-10 datasets, which are image
datasets used for image recognition and classification, to which
we artificially add single-bit-flip errors to validate the viability
of the model for JPEG bitstream recovery.

Bit errors happen randomly throughout the whole bitstream
and the errors occurring in the Huffman coding table cause
the entire file to be unreadable, while errors occurring in the
data segments lead to multiple forms of error patterns. Among
these, metadata such as the Huffman coding table accounts
for less than 0.1% of the total bitstream size. With a low bit
error rate (BER), i.e., no larger than 10−2, the bit flips that
occur in the metadata are extremely rare. Metadata has a fixed
structure and logical order, as well as a limited number of
possible values, and we can use its structural information for
error correction. Hence, the bit flips in metadata do not have
a significant problem for file reading. The bit-flip errors in
metadata can be efficiently corrected using the robust decoder
proposed in the study of [20].

To simulate corruption, we added noise to the JPEG image
bitstream at several certain BER levels and augmented some of
the files to suggest where different errors occurred for the same
bitstream. Considering the training cost, we use the context
length of 8k, which means that the size of the JPEG image
file should not be more than 7.8 KB or 128×128. We filtered
the images that do not exceed 7.8 KB in the ImageNet dataset
to be used as the training data. The image resolution of the
CIFAR-10 dataset is 32×32, which meets the demand.

2) Evaluation Metrics: In the field of communication, the
quality of a digital signal after transmission can be evaluated in
terms of peak-signal-to-noise ratio (PSNR). For the bitstream
restoration problem in this paper, the upper bound of the
signal-to-noise ratio ratio is the BER if the network does not
produce incorrect predictions. It is one-sided to use only one
single metric, the peak-signal-to-noise ratio, to evaluate the
effectiveness of the model. For the bitstream recovery problem,
we propose new definitions of accuracy and recall to replace
PSNR, as follows.

Precision = 1−
∑

i min{Li, L
gt
i }∑

i L
gt
i

, (3)

Recall = 1−
∑

i N
D
i∑

i L
gt
i

, (4)

where Lgt
i represents the Levenshtein distance [30] between

the ground truth and the corrupted bitstream, Li represents the
Levenshtein distance between the predicted bitstream and the
correct bitstream, and ND

i denotes the number of successful
fixes of the prediction result at the wrong bits. In addition,
we use a metric of human sensing of the image to evaluate
the quality of the recovered image. which is based on the
PSNR of the pixels of the image to the original image after
reading the bitstream as an image. This metric is specifically
calculated as follows: the peak-signal-to-noise ratio of pixels
to the ground truth image after the recovered stream is read as
an RGB image.

3) Parameter Settings: The embedding and hidden state
dimensions of Byte-Level are set to 3 and 768 respectively.
The embedding and hidden state dimensions of Patch-Level
were set to 12 and 768 respectively. The Adam optimizer [31]
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TABLE I
OVERALL PERFORMANCE OF THE MODEL ON THE IMAGENET DATASET.

Bit
error
rates

ImageNet

Precision(%) Recall(%)

10−2 0.380 1.424
10−3 8.950 13.719
10−4 17.265 21.101
10−5 22.430 22.544

TABLE II
OVERALL PERFORMANCE OF THE MODEL ON THE CIFAR-10 DATASET.

Bit
error
rates

CIFAR-10

Precision(%) Recall(%)

10−2 0.632 3.215
10−3 8.950 13.719
10−4 21.123 28.545
10−5 19.989 22.468

was used. The initial learning rate was 0.0001 and the batch
size was 32. A drop rate of 0.1% was used during training.

B. Results

In our experiments, we evaluated the performance of the
model at four BER levels on two datasets. In particular, a
total of 2,402 images from the ImageNet dataset were used,
which were allocated in a 10:1 ratio of training/test set. The
training set was augmented by adding noise and the model
was trained with both the corrupted and uncorrupted images,
totaling 11020 images. For the CIFAR-10 dataset, a total of
50,000 images from 10 categories were used as the training
set and 10,000 as the test set. Noised images were aligned
with the uncorrupted images and a total of 100000 images
were provided for training. For comparison with approaches
related to bitstream restoration, we choose the stage-one robust
decoder in [20] as the baseline, since this process is for
bitstreams and not for image data.

1) Overall Performance: Precision and recall. The overall
precision and recall of the prediction results for the ImageNet
test set are shown in Table I and the overall results for
the CIFAR dataset are shown in Table II. As can be seen
in Tables I and II, the prediction accuracy of the model
basically improves gradually as the BER decreases. Optimal
performance is achieved on the CIFAR-10 dataset at a BER
of 10−4 and on the ImageNet dataset at a BER of 10−5.
Theoretically, the lower the BER, the better the performance
of the model. The reason that CIFAR-10 achieves optimal
performance on 10−4 BER is that 10−4 and 10−5 will only
produce bit errors below 1 bit on average for the image size
32×32 of the CIFAR-10 dataset. We only tested the files that
produced bit errors, so it is conditionally the same for CIFAR-
10. Precision and recall cannot be reasonably calculated for
images recovered using the robust decoder in [20]. It adopts
a zero-padding strategy to skip blocks that cannot be parsed.
As a result, the precision and recall of the robust decoder have
significantly reduced, and the comparison is not meaningful.

TABLE III
OVERALL PERCENTAGE AND AVERAGE PSNR OF IMAGES

RECOVERED.

Bit error
rates

Recovery Rate(%) PSNR(dB)
ImageNet CIFAR-10 ImageNet CIFAR-10

10−2 4.082 1.460 3.523 3.389
10−3 16.226 13.510 12.063 11.221
10−4 56.122 36.180 19.994 18.190

TABLE IV
COMPARISON OF DIFFERENT METHODS IN OVERALL PERCENTAGE AND

AVERAGE PSNR OF IMAGES RECOVERED A BER LEVEL OF 10−4 .

Model Recovery Rate(%) PSNR(dB)
ImageNet CIFAR-10 ImageNet CIFAR-10

Robust decoder [20] 44.358 26.115 17.733 16.889
Our Model 56.122 36.180 19.994 18.190

Pixel’s level performance. Since the metadata (e.g., Huff-
man code) segment is relatively sparse in variable-length
bitstream, the JPEG stream is mostly filled with data segments.
When the bits in the data segment are changed, it only affects
the color, texture, and other data of the specific image block
and does not affect the decoding of the bitstream, so errors
occurring in data segments have less effect on the image. It
is impossible to evaluate the quality of the image recovered
from the metrics of bitstream restoration alone, so we use
the PSNR as an evaluation metric. The image recovered with
higher PSNR is considered as successfully recovered image,
and the results are shown in Tables III. Compared to the results
in Tables I and II, the performance of the model is better, this
is because the model is unable to identify whether the data
segments are noisy or not and thus cannot make an accurate
prediction of the segment, which reduces the accuracy of the
model. At an error rate of 10−5, the model recovered 56.122%
of the corrupted images on ImageNet and 36.180% of the
corrupted images on CIFAR-10.

Table IV demonstrates the results of the performance com-
parison between our model and the robust decoder in [20] at
a BER level of 10−4. Compared to the robust decoder, our
model achieves a performance improvement of 2.26dB PSNR
and 11.76% recovery rate on ImageNet. These results show
that our method is more advanced in bitstream restoration.

Visual Results. Fig. 3 and Fig. 4 show a comparison of the
visual quality of the images before and after the restoration
of the robust decoder [20] and our model on the two datasets,
where the recovery gets progressively better from left to right.
It is worth noting that the robust decoder is unable to produce
effective parsing results because the image size of CIFAR-10 is
too small. The samples selected in Fig. 3 and Fig. 4 are selected
from corrupted bitstreams that can still be decoded, albeit
with severe discoloration and block artifacts. It is important
to note that these samples represent a subset of the corrupted
files, as some corrupted bitstreams cannot be decoded. From
the figures, it can be seen that after the recovery by our
model, some images are completely restored while others are
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Fig. 3. Visual comparison of the images before (at the top) and after restoration
of the robust decoder [20] (at the middle) and our model (at the bottom) on ImageNet at a BER level of 10−4.

Fig. 4. Visual comparison of the images before (at the top) and after (at the bottom) restoration on CIFAR-10 at a BER level of 10−4.

TABLE V
RECOVERY RATE ON THE BENCHMARK OF NOISY METADATA SEGMENTS.

Bit
error
rates

Dataset

ImageNet Cifar

10−2 0.000% 0.000%
10−3 0.090% 0.810%
10−4 17.440% 20.010%
10−5 62.190% 81.780%

compensated for the color distortion and block shifts, thus
providing better visual effects.

2) Recovery in Metadata of Bitstream: In order to verify
that the model achieves recovery of the bitstream and not
only a pseudo-positive due to bit errors in data segments, we
constructed a benchmark using the test set of both datasets.
We made twenty copies of all images and added errors at
different locations in the metadata segment. From Table V,
it can be seen that for samples corrupted only in the metadata
segment, the model still recovers the data, which indicates that
the model learned the inter-byte relationship of metadata from
the bitstream.

V. CONCLUSIONS

In this paper, we propose a novel JPEG bitstream recovery
method based on GPT-2, which explores the potential of large
language models (LLMs) in the restoration of corrupted bit-
streams. Our model employs a large language model to process
binary information, achieving an end-to-end processing flow.

Experimental results demonstrate that the proposed method
achieves a 56% recovery rate using an ImageNet dataset at low
BER levels. In future work, we aim to explore more LLMs and
variable content-length embedding for generalized bitstreams
to enhance the model’s prediction performance and improve
the quality of recovered JPEG images.
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