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Abstract—This paper discusses the attack feasibility of Remote
Adversarial Patch (RAP) targeting face detectors. The RAP that
targets face detectors is similar to the RAP that targets general
object detectors, but the former has multiple issues in the attack
process the latter does not. (1) It is possible to detect objects of
various scales. In particular, the area of small objects that are
convolved during feature extraction by CNN is small,so the area
that affects the inference results is also small. (2) It is a two-class
classification, so there is a large gap in characteristics between
the classes. This makes it difficult to attack the inference results
by directing them to a different class. In this paper, we propose a
new patch placement method and loss function for each problem.
The patches targeting the proposed face detector showed superior
detection obstruct effects compared to the patches targeting the
general object detector.

I. INTRODUCTION

Deep neural network (DNN) models are susceptible to
malicious manipulation of input data. Previous researches
have employed a variety of approaches, including the use of
specially designed spectacles that obscure key feature points of
an object by reflecting light [1], as well as the development of
sophisticated Adversarial Examples (AE) that subtly alter pixel
values to cause the model to misclassify inputs intentionally.
The threat of DNN attacks has emerged as a significant
concern in light of the increasing incorporation of DNN-based
models in a multitude of systems. Additionally, researches
have explored the Remote Adversarial Patch (RAP), an attack
that does not depend on the specific object being targeted.
Unlike methods that directly alter features, RAP can remotely
influence the model’s output.

RAP was defined by Mirsky et al[2]. They identified two key
characterisitics in their definition of RAP. One characteristic is
the semantic alteration of model inference caused by patches,
and the other is the ability of patches to be remotely attacked.
Among these characteristics, the remote attackability of RAP
is particularly significant. Here, the word “remote ” means
that the AP exists outside the target object’s area. Compared
to an AP that is placed on the target object, a RAP that does
not directly modify the target object’s characteristics is more
difficult from an attack perspective. For the sake of simplicity,
this paper defines RAP solely based on the characteristic of
remote attackability.

This study focuses on the application of RAP to face detec-
tion. Although RAP has been extensively discussed for gen-
eral object detection (multi-class object detection)[3], [4], the
feasibility of RAP for face detection remains underexplored.
Focusing on face detection is particularly important because
obstructing it significantly enhances privacy protection. For ex-
ample, applying a RAP to images before publication or capture
could prevent unauthorized third parties from replicating the
face region.

Two key challenges in applying RAP to face detection are
as follows. (1) the scale of detectable objects is diverse. In
the field of face detection, unlike the general object detection
field, there is a requirement to detect obscure and distant
objects, such as surveillance camera images. As a result,
there is a tendency to focus on small features so that even
extremely small faces can be detected. Small features have
limited characteristics in the area around the face in the image
that are included in the convolution. Consequently, the area that
affects face detection is also small. Thus, the restrictions on
where the patches can be placed are strict and are considered
difficult to attack by RAP. (2) fewer classes to classify. Face
detection involves fewer classes compared to multi-class object
detection. In addition, because RAP operates from a distance
and does not alter the object’s intrinsic features directly.
Therefore, it is difficult to redirect a class given to a particular
object to another class with similar features, which limits the
approaches that can be taken in an attack.

To address this issue, this study proposes a novel RAP
method which involves two main processes: scaling and tiling.
The scaling process adjusts the size of patches to correspond
with different face scales during training, enhancing optimiza-
tion across varying scales. The tiling process arranges the
patches in a grid pattern, ensuring that any cropped region of
the image will contain part of a patch. This approach addresses
the issue by applying a tiling process that ensures any cropped
region contains patches to some extent, and a scaling process
that adjusts their relative size according to the scale variation
of the face.

In addition to optimizing patches using the proposed patch
applying method, we introduce a novel loss function for face
detection obfuscation, called the Borderline False Positives
Loss. The Borderline False Positives Loss is designed to



increase the number of false positives near the true face region
and to disturb the coordinates of the true face. This enables
false inferences on the face detection model without forcing
the inference class towards the background class, which is
significantly different from the face class. In other words, we
overcome the attack limitations of having (2) fewer classes to
classify, thereby realizing an effective attack method.

We conducted comprehensive experiments on the proposed
method using multiple datasets and various RAP methods.
Through these experiments, we demonstrated the effectiveness
of the proposed method in terms of its obstruction performance
against patch-based face detectors and its performance across
diverse scales.

The contributions of this paper are listed below.

« We proposed a novel RAP method based on patch tiling
and borderline false positive loss.

e Our comprehensive experiments showed consistent ob-
struction performance.

e Our proposed method also demonstrated consistent ob-
struction performance across datasets with varying face
scales, showing robustness to face scale variation.

II. RELATED WORK
A. Adversarial Attack

Data that exploits vulnerabilities in a Deep Neural Network
(DNN) model when attached to an image is called an Ad-
versarial Patch (AP). Although AP generation methods were
initially discussed for image classification models, Song et al.
proposed the first AP generation method for object detection
models [5]. Compared to image classification tasks, object
detection tasks detect and label multiple objects in a scene,
making it more difficult for AP to obstruct detection. APs
have also been studied for person detection tasks[6]. Person
detection is considered to be difficult to obstruct due to the
large diversity within the person class.

However, all the studies discussed so far had the limitation
that they must be located on a defined region of the detected
object.To overcome the region limitation, Liu et al. proposed
an adversarial patch, called DPatch[3], so that the effect of the
attack is independent of the location.Their method is similar
to that of Liu et al. but differs in that Liu et al. optimize the
patch so that its region of presence is the only region proposed,
whereas Lee et al. maximize the losses used by the model
during training[4].

On the other hand, Mirsky et al. proposed a patch generation
method that can apply AP to segmentation models and simul-
taneously defined RAP[2]. According to the definition given
by Mirsky et al., the methods of Lee et al. and Liu et al. do
not strictly fit the definition of RAP. However, in this paper,
we define RAP as a method that can be attacked remotely, and
therefore include these two methods as RAP.

B. Face Detection Obstruction

Obstruction of face detection has been discussed for the
purpose of preventing unauthorized face image leakage due

to unintentional capture of face images. Yamada et al. [1]
proposed a detection jamming method that does not interfere
with facial expression communication, in which facial features
are modified by glasses irradiating near-infrared signals. AE
[7] and AP [8] in face detection tasks have also been studied,
but all of these methods involve processing of the face areas
to be disturbed. Therefore, their applications are limited for
privacy protection purposes. On the other hand, the patches
generated by the proposed method do not require processing
of face regions.

III. METHOD

The proposed method consists of a patch application process
and a learning process. Each process is explained in the
sections Section III-A and Section III-B, respectively. The
overall process is shown in Fig. 1. Let I be a dataset
consisting of N images, where each image can be represented
asZ = {I, | i = 0,---,N — 1}. The face detector F
takes an image I; as input and returns an inference result
d; = {dix | k = 0,---,M — 1}. Here, the inference result
d; consists of M > 0 face regions d;;. Each face region d;
includes the rectangular coordinates (x,y) of the rectangle’s
center, the width and height (w, k), as well as the confidence
value p for the detection. It can be expressed as follows:

dik = (Dik> Tiks Yik» Wik, Pike)- (D

In addition, the Ground Truth (GT) of the correct face detection
inference result for each image is g;.

Let P be a adversarial patch, and let (wp, hp) be its width
and height. Using the embedding function A to embed the
patch in the image, the patched image I; can be expressed as
follows.

Furtermore, let the face detection results for INZ- be denoted as

d;, with each element expressed similarly to d; as follows.
d =
Czij =

{dij | j=0,--- M —1} 3)

(Digs Tijs Ui Wiz, ij)- 4
A. Learning Methods

1) Definition of Obstruction: For the detection (L-j, True
Positive (TP) and False Positive (FP) are defined based on the
ToU threshold value 6p, and the number of cases where the

detection of the ground truth (GT) fails is defined as False
Negative (FN), as follows.

dij is TP <= 3gi; such that ToU (dyj, gir.) > 0p (5)
dij is FP <= Vg such that ToU(d,;, gix) < 0p (6)
gir is FN <= Vd;; such that ToU(dyj, gir.) < 0p (7)

True Negative (TN) indicates whether the system can cor-
rectly identify areas where faces do not exist. However, in this
paper, we will be focusing on the True Positive (TP), False
Positive (FP) and False Negative (FN) values related to the
face areas detected by the detector. A decrease in TP indicates
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Fig. 1: Schematic diagram of the proposed patch generation method. We propose a patch application method
and its learning method to explore the feasibility of generating RAPs to attack face detectors

that the face detector is failing to correctly identify face areas,
while an increase in FP suggests that it is becoming more
difficult to extract the correct face areas from the detection
results. Thus, the efficiency of obstructing face detection can
be evaluated based on the decrease in TP and the increase in
FP.

2) Borderline False Positive Loss: In this study, we propose
Borderline False Positive Loss to reduce True Positives (TP)
and increase False Positives (FP). This loss function increases
FPs around the boundary of the rectangle in g; by obstructing
the true face area, thereby reducing TP. Let Lyf,. denote the
Borderline False Positive Loss, Equation (8), the objective
function, Equation (9) the definition of loss function.

min{ Losp(gi, di) }- ®)
i M

Ly ppe(gir di) = — Z bij * log(1 — Pij). ©)
=0

Here, b;; is shown in the formula for the borderline variable
in the Equation (10). b;; is a borderline judgment variable that
is 1 when the inference result for the image with the patch
added, d;;, is 07 > a;; > 0, which is the boundary between
TP and FP, and O otherwise.

b — 0 (aij > 9T) or (ai]‘ < HF)
K 1 61 > Q5 >0 '

The values of 61 and O are IoU thresholds, set separately
from the threshold #p used to classify dij as TP or FP. The
following inequality must hold for each threshold: 67 > 6p >
Or. As shown in Equation (11), a;; represents the maximum
IoU value calculated between ¢g; = {g;x | k=0,--- , M — 1}
and d’v”

(10)

a;; = Imax IOU(ng,dw)
Jik€9i

Y

The loss function, Ly, increases the confidence value
of the inference results that may be false positives based on
the borderline decision variable, b;;. The boundary judgment
variable b;; is a variable that classifies the inference results
to be the judgment boundaries between TP and FP based on

the maximum IoU value a;; obtained between g; and Jw The
loss function, Ly fpe, is designed to mislead the coordinates
of the inference results that would otherwise be true positives
into false positives by increasing the number of false positives
around the true face region using b;;.

B. Patch Applying Process

The expression for the patch application process A is shown
as Equation (12), and the process of the patch application
process is shown in the figure Fig. 1 on the right.

ALy, gi, P) = G(L;, M(1;), T(I;, S(P, g:))).  (12)

The function M takes the image I; as an argument and converts
it into a reference image for masking only the foreground.
The function G takes as arguments three images(foreground,
mask and background) of equal height and width, and performs
foreground-background composition. The scaling function S
and the tiling function 7' are both functions that perform
transformations on the patches that are optimized. In applying
patches, the scaling and tiling processes play a particularly
important role.

1) Scaling: The scaling process is the S(P, g;) on the rigth
side of Fig. 1. By making the scaling function S align the area
ratio of patches and faces, it encourages patches to be able to
obstruct faces of various scales uniformly during learning. In
the scaling process, patch P is resized to have a width of wps
and a height of hps. Using patch P and the corresponding
GT g;, the width wps and height hps of the scaled patch are
expressed by the following equations.

(wps,hps) = S(P,gl)
= (round(wp * s),round(hp * s)). (13)
. — /a*wik*hik. (14)
hp *wWp
k = argm]?xwik * M. (15)

2) Tiling: The T(I;, S(P, g;)) on the right side of Fig. 1 is
a tiling process. The tiling function 7' is a process that converts
a patch P into a patch tile PT of the same height and width as
the image by tiling the patch P horizontally and vertically.



Reducing the dependence of face detection on face position
by ensuring that the pixels of the patch are included when
any face in any area is extracted as a feature. Each coordinate
PT[x,y] of PT can be determined using the tiling function 7'
as follows.

Pt =
Pllz,y] =

T(I, P%). (16)
PS[z mod wps,y mod hps].  (17)

The edges of the patches created by tiling will be cut off to
match the image size.

IV. EXPERIMENT
A. Experimental Setup

1) Dataset: Two datasets are utilized in the experiment:
CASIA Gait B (CGB) [9] and FaceForensics++ (FFP) [10].
CGB is designed for gait recognition and includes images cap-
tured in a controlled indoor environment. The dataset features
124 subjects, each captured from 11 different angles. FFP, on
the other hand, is a dataset for detecting DeepFake videos and
comprises 1000 videos featuring frontal faces without occlu-
sion, collected from Youtube press conference videos. In the
experiment, only frontal faces were extracted from the CGB
to match the experimental conditions with the FFP containing
frontal faces. Images without facial regions were removed from
these videos using S3FD to avoid duplication, and the training
and validation datasets of 3000 images each were extracted.
In addition, for the purpose of detection obstruction, GT is the
inference result d; of the image I; before patch application.
Therefore, in the experiment, d; = g;.

2) Preprocessing: For these moving images, a mask image
and ﬁl the GT, are created in advance. In this experiment,
rembg[11] was used to create the mask image and S3FD was
used to create bi.

3) Learning Patch: For the various hyper-parameters, the
IoU threshold 6p = 0.5, and the scaling parameter o = 5.58
and the loss function parameters 07 = 0.6, 0 = 0.3 are deter-
mined from empirical results. For optimization, the Nesterov
Iterative Fast Gradient Sign Method (NI-FGSM)[12] is used in
the proposed method. In addition, the methods of DPatch[3]
and Lee et al.[4] are used for comparison.

4) Evaluation Methods: The F value and the Average
Precision (AP) value are used to compare how much the
detection performance is degraded compared to the situation
without patch obstructions. The number of TPs, FPs, and GTs
are also used to compare obstruction performance. The reason
for not simply using F and AP values is that F values are
insensitive to changes in the number of TPs when the number
of FPs becomes extremely large relative to the number of
TPs, and AP values are insensitive to increases in the number
of FPs, making it difficult to correctly compare obstruction
performance.

B. Detection Obstruction Performance Evaluation

We present a comparison of the proposed RAP genera-
tion method with other methods. DPatch[3] and Lee et al.’s

method[4] are used for the comparison. The coordinates on
the image where the two patches to be compared are placed
are determined randomly, as in the case of both patches
generation.S3FD is used for face detection. The experimental
results are shown in I. Table I shows that the proposed method

TABLE I: Comparison of detection obstruction performance

dataset _method [ F AP GT TP FP

CGB Dpatch 9.96e-1 1.0 3000 2977 O
Lee 1.34e-1  4.14e-2 3000 2967 38235
Proposed | 7.91e-1  9.99e-1 3000 1967 7

FEP Dpatch 9.13e-1  9.87e-1 3315 3305 617
Lee 1.96e-1  9.29e-2 3315 3287 26866
Proposed | 9.78e-1  9.99e-1 3315 3227 56

has fewer TP than other methods on both datasets. This
indicates that Borderline False Positive Loss can successfully
disturb the coordinate of the true face. However, as shown in
Table I, the increase in FP with the proposed method is not as
pronounced as in the method by Lee et al. This suggests that
further increasing FP may enhance the effect of the Borderline
False Positive Loss.

When CGB is used as the training data, the patches gener-
ated by the proposed method reduce TP when verified using
CGB. However, when FFP is used to learn and verify patches,
the degree of suppression of TP is less than when CGB is used.
We think that the reason for this difference in the dataset is that
CGB contains many small faces, while FFP contains almost
large faces. For smaller faces included in the CGB, the IoU
fluctuates steeply in overlapping regions, making it easier to
meet the threshold requirements.

C. Positional Robustness Evaluation

When detection is obstructed for different images, the
relative positional fluctuations between the patch and the
obstructed object due to the difference in the coordinates
of the obstructed object for each image are considered to
affect the detection obstruction performance. Therefore, we
verify whether detection obstruction is robust to such position
variations by comparing its position independence with the
DPatch[3] and Lee et al.’s method[4]. The inference results for
all images in the test set with the patch applied are classified
into TP and FP based on the ground truth, and the frequency
for each upper right coordinate is tabulated and plotted as
a heat map. The two patches to be compared are fixed at
the coordinate (0,0) to illustrate the effect of the patch on
detection. Ideally, the verification should be performed on a
dataset where the coordinates of the obstacle targets are evenly
distributed throughout the image. In reality, however, it is
difficult to prepare such a dataset. Therefore, we created a
coordinate uniform data set that met the ideal conditions in a
pseudo-way, and conducted a verification.

Coordinate Uniform Data Set In order to show that it
is possible to obstruct detection no matter where the face is
located in the image, we created a dataset in which the posi-
tions of the face regions are uniformly distributed throughout
the image, based on 10 images randomly extracted from the
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Fig. 2: Detection results for the coordinate uniform dataset.
Top row: DPatch, middle row: patches by Lee et al. and bottom
row: patches by the proposed method. From left to right: TP,
FN, FP

CASIA Gait B test set. The coordinate uniform dataset was
created by shifting the image based on the top left coordinate
of the face region and repeating the operation from the top
left to the bottom right of the image. In this case, the width of
each movement was set to 25 pixels. The coordinate-uniform
dataset was created by inferring the face region before applying
the tiling adversarial background image, and then excluding
images for which there were no inference results. The total
number of images in the dataset is 24,654. The results of the
experiment are shown in Fig. 2.

The verification results show that the Dpatch and Lee et al.
patches each have a concentration of FN in the vicinity of the
coordinates where the patches are located (z,y) = (0,0). In
contrast, the proposed method distributes the FNs throughout
the image. This result demonstrates the effectiveness of the
proposed method’s tiling process, and shows one advantage
over previous research. This result is also one basis for
supporting the hypothesis proposed in Section I that the
placement coordinates of the patches are highly constrained
when disturbing face detection.

D. Dataset Transferability

For the purpose of protecting privacy, it is desirable that
the generated patches can obstruct face detection in various
situations. Therefore, we will swap the data sets between
the training and validation phases, and verify whether the
obstructing performance of the patches learned with the known
data set can obstruct the unknown evaluation data set as well
as the known training data set. If it is possible to obstruct
face detection in various situations, it should be possible to
obstruct other datasets with different shooting conditions in
the same way as the training dataset. In addition, we will
consider the possibility that the transferability to unknown
datasets may differ depending on the face detection model

used during training, and we will conduct verification using
multiple models.

The patch is tested using a different dataset from the one
used for learning. We conduct experiments for each of the
three models MTCNN]13], S3FD[14], and RetinaFace[15] and
compare them. The experimental results are shown in Tablell.

TABLE II: Table for dataset transferability

train/test

dataset model F AP GT TP FP
MICNN | 29261 1.0 3000 503 0

CGB/CGB  g3pp 79%e-1  9.99e-1 3000 1967 7
RetinaFace | 7.87e-1 1.0 3000 1947 0
MTCNN | 9.14e-1 999e-1 3315 3135 407

CGB/FFP  o3pp 9.78¢-1 9.99e-1 3315 3226 58
RetinaFace | 9.72e-1 9.99¢-1 3315 3147 10
MTCNN | 9.18e-1 9991 3315 3132 371

FFP7FFP 3pp 9.78¢-1 9991 3315 3227 56
RetinaFace | 9.72e-1 9.99¢-1 3315 3147 10
MTCNN | 2.92e-1 1.0 3000 5120

FEP/CGB  g3pp 7971  9.99%-1 3000 1993 10
RetinaFace | 7.92e-1 9.99e-1 3000 1968 1

The patches generated using CGB have kept the TP below
2,000 in the verification using CGB. In addition, patches gen-
erated using FFP kept the TP to about 3,200 in the verification
using FFP. All the models tended to have the same tendency in
terms of transferability to unknown data sets. When referring
to the results of verifying the patches learned with FP using
CGB, TP is less than 2000 for all models. In contrast, when
the same verification process is conducted using CGB with
FFP, the results do not exhibit a similar trend.

The reason for this difference is thought to be that FFP
contains many high-resolution images of faces of various sizes
compared to CGB, and is more difficult as a detection obstruc-
tion task. The patches trained on FFP have high-resolution
and obvious facial features, which may have contributed to
the enhancement of universal optimization independent of
the dataset, although the optimization did not work well for
the faces included in FFP. As a result, it may have shown
higher interference only for CGB containing low-resolution,
ambiguous facial features. Since the purpose of scaling is to
find patterns that can obstruct the detection of faces of any
scale, we believe that the obstructing performance of FFP
against CGB is a result that shows the effectiveness of the
scaling of the proposed method.

V. DISCUSSION

Multiple faces in the same scene : In this experiment, we
did not consider the case where there are multiple faces in
the scene to be disturbed, but only the case where there is
a single face. This is because scenes where there is a single
face are assumed to be online meetings and press conferences.
By performing face detection obstruction on these videos, it
is possible to protect the privacy of the photographed person,
and it is effective. We plan to consider the case where there
are multiple faces in the future.

Improvement of the loss function : One possible reason
for the smaller number of FP cases in Section IV-B than in



other methods is that the optimization process did not progress
because the loss value often took the value O in the early
stages of optimization. In order for the value calculated by
the Borderline False Positive Loss to be non-zero, the IoU
calculated between the correct face region and the inferred
detection needs to be less than 67 = 0.6. On the other hand,
for images without patches applied, the IoU will be close to 1.
Therefore, it is likely that the loss value did not change from 0
and optimization did not progress. To solve this, it seems that
it is necessary to have an objective function that reduces the
iou between the correct face region and the estimated detection
results from 1 to around 0.6.

VI. CONCLUSION

We discussed the difficulty of implementing RAP that
targets face detectors and presented the diversity of face
region scales and the small number of classification classes
as reasons for this. In contrast, this study proposed a unique
patch placement method and loss function as a solution to each
of these problems.

As a result of patching using the proposed method, it showed
fewer TP than other methods. In addition, the patches learned
on a dataset that tends to include large faces showed a certain
level of obstruction performance on a dataset that tends to
include small faces, indicating that they can cope with the
diversity of face sizes. Comparison with patches generated by
other methods shows that the proposed disturbance method
contributes to TP reduction even for face detectors with a small
number of classification classes.

The proposed method still has room for improvement in both
TP and FP, and further examination is needed regarding the
refinement of the loss function and parameter optimization.
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