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Abstract— Lossy compression is widely used for video compres-
sion, but it often introduces compression artifacts that degrade
the visual quality of compressed videos. Consequently, numerous
deep learning-based methods have been developed to post-process
compressed videos. However, previous post-processing models
often encounter difficulties when there is a domain gap between
the training and test datasets. Test-time optimization (TTO), a
technique that finetunes the model during the test stage, has
been considered an effective solution to address the domain
gap problem. In this paper, we introduce a novel TTO method
specialized for compression artifacts reduction. Specifically, we
propose using image pairs available on the decoder-side, i.e., the
images before and after the adaptive loop filtering of the versatile
video coding standard, as input and target of TTO such that the
post-processing model can be adapted to the characteristics of test
data. Experimental results on several baseline models and test
datasets demonstrate the effectiveness of the proposed method in
post-processing compressed videos.

I. INTRODUCTION

With the increasing demand for multimedia content, video
traffic occupies the majority of worldwide internet traffic.
To address the exponential growth of video traffic, the Joint
Video Experts Team (JVET) established the latest video coding
standard called Versatile Video Coding (VVC) [1] as a suc-
cessor to High Efficiency Video Coding (HEVC) [2]. These
video coding standards aim to reconstruct high-quality video
frames while requiring fewer bits for encoding. However, the
block-based coding structure inevitably leads to compression
artifacts, such as blocking and ringing artifacts, which signif-
icantly degrade image quality.

To alleviate compression artifacts, VVC adopted several
filters, including deblocking filter (DBF) [3], sample adaptive
offset (SAO) [4], and adaptive loop filter (ALF) [5]. DBF
attenuates blocking artifacts across block boundaries primarily
caused by block-wise transform and quantization. Furthermore,
SAO and ALF perform adaptive adjustments to the decoded
frame to reduce the difference between the decoded and
uncompressed frames. Although these filters effectively reduce
compression artifacts, there is still ample room for improving
the quality of decoded frames. Inspired by the recent success
of deep learning in low-level vision tasks [6], [7], [8], [9],
[10], [11], [12], many researchers have explored convolutional
neural network (CNN)-based compression artifacts reduction
filters [13], [14], [15], [16], [17], [18]. CNN-based filters have
demonstrated higher performance in reducing compression

Fig. 1. Comparisons of the difference signals: (a) Original image, (b) decoded
image (after ALF), (c) difference between the original and decoded images,
(d) difference of before/after DBF, (e) difference of before/after SAO and
(f) difference of before/after ALF. Absolute difference values are colored for
visualization.

artifacts than handcrafted filters due to their strong ability to
capture non-linear degradation in compressed frames.

Nonetheless, CNN-based filters are inherently sensitive to
the domain gap between training and test datasets. In par-
ticular, since compression artifacts depend on video coding
parameters, such as the quantization parameter (QP), as well
as video characteristics, it is very challenging to handle images
with diverse distributions of compression artifacts using CNNs
trained on specific training datasets. To this end, several
methods have attempted to train individual CNNs for a set
of QPs [19], [20], train a CNN using images compressed
with different QPs [21], or even combine multiple CNNs [22].
However, such trained CNNs may still require more ability to
handle images with different compression artifacts at the test
stage.

Test-time optimization (TTO) has been considered one of the
solutions for improving the performance of pre-trained CNNs
for test data. Since ground-truth (GT) labels do not exist for
test data, several novel ideas have been introduced in clas-
sification [23], human pose estimation [24], super-resolution
[25], video frame interpolation [26], video segmentation [27],
video object segmentation [28] tasks to finetune the CNN
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Fig. 2. The overall pipeline of the proposed method: (a) The post-processing network is trained on the source data using GT labels; (b) The post-processing
network is first finetuned on the test data (left) and then applied to obtain artifacts-reduced video frames (right).

without GT labels. However, these methods [23], [24], [25],
[27], [28] incorporate image generation or rely on self-training
and pseudo-labeling, which demand significant computational
capacity or suffer from the challenges posed by noisy pseudo-
labels [29].

In this paper, we make the first attempt to apply TTO for
compression artifacts reduction. In our case study of artifacts
reduction in videos compressed by the VVC standard [1], we
notice that the input and output of the ALF can effectively
serve as the input and target for TTO of the CNN, respectively,
to overcome the aforementioned challenges. Specifically, using
a few input and output image pairs of the ALF, we update the
parameters of the CNN for a few steps such that the CNN can
better handle test data. From extensive experimental results,
we show the effectiveness of the proposed TTO method.

II. PROPOSED METHOD

A. Motivation

Assume that we have a post-processing CNN trained on un-
compressed images and their corresponding compressed ones
as the GT labels and input, respectively. Since uncompressed
images do not exist on the decoder side, we need surrogate
pairs of input and target images for TTO of the post-processing
CNN. Fortunately, the VVC standard, as well as many other
off-the-shelf video codecs, perform several in-loop filtering
operations during decoding; thus, the input and output images
of the in-loop filters are still available on the decoder side.
Among the three adopted in-loop filters of the VVC, i.e.,
DBF [3], SAO [4], and ALF [5], the difference between the

input and output images of ALF best mimics the one between
the uncompressed and compressed images, as illustrated in
Fig. 1. We thus propose to use this valuable input and output
image pair of ALF as the input and target images for TTO,
respectively, to adapt the post-processing CNN on test data.

B. Test-Time Optimization

Fig. 2(a) shows the training procedure. Let fθ denote a
post-processing CNN parameterized by θ, which is trained to
minimize the following:

θ∗ = argmin
θ

∑
i

∥∥∥fθ (Îi)− Ii

∥∥∥, (1)

where Îi and Ii are the i-th pair of decoded and uncompressed
images, and ∥·∥ measures the distance between the network
output and target uncompressed images. Given the training

dataset I =
{
Îi, Ii

}NT

i=1
, where NT is the number of images,

we can obtain a set of optimized parameters θ∗ that work
well on average for the training images. To make the post-
processing CNN more effective on test data with diverse
distributions, we propose an algorithm that can adapt network
parameters to test data.

Fig. 2(b) illustrates the proposed TTO procedure. Let Ĵi
denote the i-th decoded video frame on the decoder side. Since
its corresponding GT image Ji is not available, we instead
extract an image before ALF, denoted as J̃i, and use it as input
for TTO of the post-processing CNN. Specifically, the network
parameter is first initialized as θ∗ in (1) and then finetuned on
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test data as follows:

θ∗∗ = argmin
θ

∑
i∈Υi

∥∥∥fθ (J̃i)− Ĵi

∥∥∥, (2)

where Υi is a set of frame indices used for TTO. Since
video characteristics change over time, TTO has to be applied
continuously during decoding. In our implementation, we
apply TTO at the group of pictures (GOP)-level, a set of
32 consecutive frames in VVC [1]. In each frame, ALF is
selectively applied according to the rate-distortion cost [1].
Therefore, we define Υi as a set of indices of frames belonging
to the same GOP with Ĵi that ALF processes. Once a GOP-
level TTO is completed, all frames in the GOP are post-
processed by fθ∗∗ to have artifacts-reduced video frames, as
illustrated in Fig. 2(b). If no frame is processed by ALF in a
GOP, TTO is not applied.

C. Implementation Details

Considering that the residual block (ResBlock) is one of
the most common building blocks of recent image restoration
models [10], [30], [31], [32], we design a ResBlock-based
baseline network (denoted as M1), as shown in Fig. 3(a) for
the performance verification of the proposed TTO. M1 contains
24 residual blocks, each composed of two 3×3 convolutional
layers and a PReLU activation layer. The global skip con-
nection is also included to ease the training. The network
complexity of M1 is 58,600 multiply-accumulate operations
per pixel (MAC/pixel). In addition, the UNet architecture is
widely used in image restoration tasks, such as deblurring
[33], [34] and denoising [35], [36], [37]; thus, we design a
baseline network based on the UNet architecture (denoted as
M2), as shown in Fig. 3(b). M2 consists of three levels of
convolution blocks, down-blocks, and up-blocks. Each of these
blocks is composed of 3×3 convolutional layers and PReLU
activation functions. Additionally, each down-block and up-
block incorporates a 2×2 convolution and transposed convolu-
tion layer, respectively. Skip connections are included between
each level’s down-block and up-block. The complexity of M2
is 104.3 kMAC/pixel, and the numbers of network parameters
of M1 and M2 are 1.78M and 4.92M, respectively.

Since the proposed TTO is designed to alleviate the per-
formance degradation of the post-processing CNN caused by
the domain gap between training and test data, the required
number of parameter update steps of (2) can differ for each
video sequence or even for each GOP of the same video
sequence. To this end, we devise a simple but effective strategy
that terminates the parameter update if the following condition
is satisfied:

1

|Υi|
∑
i∈Υi

∥∥∥fθt+1

(
J̃i

)
− fθt

(
J̃i

)∥∥∥ < Th (3)

where |·| represents the cardinality of a set, θt represents a
set of network parameters after the t-th update, and Th is a
threshold, empirically chosen as 0.0003. In other words, TTO
is terminated if it leads to a marginal change after a certain

TABLE I
PERFORMANCE EVALUATION IN BD-RATE (%) UNDER RA
CONFIGURATION FOR THE JVET-CTC TEST SEQUENCES.

Class Sequence M1 M1+TTO M2 M2+TTO

B

MarketPlace -3.09 -3.25 -1.13 -1.23
RitualDance -3.93 -4.13 -1.43 -1.49
Cactus -2.50 -2.83 -0.28 -0.66
BasketballDrive -3.66 -3.88 -0.47 -0.95
BQTerrace -1.05 -2.04 +0.62 -0.07

C

BasketballDrill -3.88 -4.40 -0.70 -1.01
BQMall -4.45 -5.00 -1.01 -1.35
PartyScene -4.20 -4.48 -0.57 -0.73
RaceHorsesC -2.41 -2.75 -0.50 -0.53

D

BasketballPass -5.89 -6.02 -1.66 -1.83
BQSquare -9.44 -9.91 -1.98 -2.33
BlowingBubbles -4.47 -4.62 -0.83 -0.99
RaceHorses -4.79 -4.87 -1.40 -1.57

Total
B Class -2.85 -3.23 -0.54 -0.88
C Class -3.76 -4.16 -0.69 -0.90
D Class -6.15 -6.35 -1.47 -1.68
Average -4.14 -4.48 -0.82 -1.13

update step. We also terminate TTO if the number of updates
reaches the threshold Nh, empirically chosen as 6.

Inspired by [27], [38], [39], [40], we aim to preserve
domain-agnostic information of the pre-trained model while
updating only domain-specific features. To achieve this, instead
of updating the parameters of all layers in the post-processing
CNN, we opt to freeze earlier layers to retain low-level
features as well as the last-stage image reconstruction layers.
Consequently, the proposed TTO aims to learn high-level
content-specific features by finetuning only the second half
of the ResBlocks in the M1 model, as well as the Up-block
section in the M2 model. Fig. 3 indicates the trainable layers by
TTO. Last, since ALF obtains filter coefficients by minimizing
the L2 loss between the original and restored images [41], we
use the L2 loss in (2)-(3).

III. EXPERIMENTAL RESULTS

For performance evaluation, we used videos compressed
by the VVC reference software VTM-11.0 using the random
access (RA) configuration and five QPs = {22, 27, 32, 37, 42}.
The BVI-DVC dataset [42] and the class B-D JVET-CTC test
sequences [43] were used as training and test data, respectively.
The BD-rate [44] of the Y channel was used as a performance
metric, which represents the percentage of the average bit-
saving over the VTM-11.0 baseline.

During the training stage, the baseline network was trained
for a total of 100 epochs via (1) using the Adam optimizer with
an initial learning rate of 0.0001. The learning rate decayed at
every 20 epochs after 30 epochs with a decaying rate of 0.1.
We trained five networks separately for the five chosen QPs.
In the test stage, TTO was applied at the GOP-level using the
ALF-applied frames. From the input and output image pairs
of ALF, we randomly cropped three patches with a size of
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Fig. 3. Post-processing network architectures used in our experiments: (a)
ResBlock-based baseline (M1) and (b) UNet-based baseline (M2). Only the
dotted blocks are updated during TTO.

256×256 and trained the network using (2) with the Adam
optimizer and a fixed learning rate of 10e-6.

Table I shows the BD-rate results. Compared to the VTM-
11.0 anchor, our post-processing networks, i.e., M1 and M2,
led to an improvement in the BD-rate of 4.14% and 0.82%,
respectively. The proposed TTO resulted in 4.48% (M1+TTO)
and 1.13% (M2+TTO), indicating its effectiveness. Note that
TTO decreased the BD-rates for all test sequences, with a
maximum gain of 0.99% for BQTerrace and a minimum gain
of 0.08% for RaceHorses in M1 and a maximum gain of 0.69%
for BQTerrace and a minimum gain of 0.03% for RaceHorsesC
in M2.

Next, we obtained the experimental results using different
values of Nh, as shown in Table II. As Nh increased, the aver-
age processing time of TTO per GOP increased approximately
linearly. When Nh = 0, the pretrained post-processing model
was applied without TTO. When Nh ̸= 0, the processing time
for TTO and the inference time after TTO were added together.
Based on our experiments, with Nh = 6, the processing time
ranged from a minimum of 4.3 seconds to a maximum of
10.8 seconds, depending on the test sequence characteristics.
Note that the BD-rates did not continuously increase as the
number of network updates increased. Since not a real image
pair was used for TTO, but a surrogate image pair, we
found performance saturation after certain update steps and
thus chose Nh = 6 as the default value for both baselines,

TABLE II
EXPERIMENTAL RESULTS ON THE NUMBER OF NETWORK UPDATE STEPS.
THE PERFORMANCE WAS EVALUATED AS THE AVERAGE BD-RATE AND
THE AVERAGE PROCESSING TIME PER GOP FOR THE CLASS B-D TEST

SEQUENCES.

M1
Nh

0 2 4 6 8 10
BD-rate (%) -4.14 -4.30 -4.41 -4.48 -4.49 -4.49

Time (s) 4.3 6.0 8.5 10.8 13.2 15.7

Fig. 4. Comparison of the TTO results obtained using different training
datasets: (a) The PSNRs between the degraded and uncompressed (original)
frames, where we add the Gaussian noise to the decoded (after ALF) frames
of the JVET-CTC test sequences and obtain the noise standard deviation that
results in the similar average PSNR of the frames before ALF, which is 0.0018
at QP=32; (b) Experimental results in BD-rates, where the Gaussian noise-
added frames (Ours, Gaussian) and the frames before ALF (Ours, ALF) are
used as input for TTO, respectively. The noise standard deviations are chosen
to match the average PSNRs of the frames before ALF for all five tested QPs.
Both TTO results show better performance than M1 while using the input and
output image pairs of ALF for TTO yields a higher BD-rate gain.

considering the increased processing time by TTO.
Lastly, to verify the effectiveness of using the image pairs

before and after ALF as training images for TTO, we added
Gaussian noise to the decoded image Ĵi and obtained its noisy
version, denoted as J i. For a fair comparison, the standard
deviation of the Gaussian noise was determined to make the
average PSNR between Ĵi and J i and that between Ĵi and
J̃i similar, as shown in Fig. 4(a). For this experiment, the
proposed TTO was applied while replacing J̃i by J i in (2).
As shown in Fig. 4(b), the proposed TTO enables improved
performance in both cases compared to M1, indicating the
effectiveness of using test-time data for finetuning. In addition,
the use of the frames before and after ALF was found to be
better than the use of noisier-to-noisy image pairs obtained by
Gaussian noise addition [45], supporting the effectiveness of
using compression-specific distortion for TTO purposes. More
results can be found on the project page1.

IV. CONCLUSION

This paper introduced a new use case of TTO for com-
pression artifacts reduction. The proposed TTO method uses
the signals before and after the in-loop filter of VVC, which
are also available on the decoder side. By finetuning the
post-processing model at the test stage using these signals as
training data, we showed that compression artifacts could be

1https://yourhong1.github.io/PP-TTO/
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reduced for test video sequences with different characteristics.
We believe that our method provides an effective way of
optimizing pre-trained models during the test stage, paving
the way for further developments in artifacts reduction and
quality improvement of compressed videos. Moreover, while
our approach has focused on post-processing filters, the po-
tential to extend TTO to other stages within the video codec,
such as the in-loop filter or scaling techniques, presents a
valuable direction for future research. By applying TTO to
these components, we could further enhance overall BD-rate
performance. This flexibility suggests that TTO could serve
as a versatile tool for solving various challenges in video
compression.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No. 2017-0-
00072, Development of Audio/Video Coding and Light Field
Media Fundamental Technologies for Ultra Realistic Tera-
media

REFERENCES

[1] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R.
Ohm, “Overview of the versatile video coding (VVC) standard and its
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 10,
pp. 3736–3764, 2021.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[3] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, pp. 614–619, 2003.

[4] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai,
C.-W. Hsu, S.-M. Lei, J.-H. Park, and W.-J. Han, “Sample adaptive offset
in the hevc standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22,
no. 12, pp. 1755–1764, 2012.

[5] C.-Y. Tsai, C.-Y. Chen, T. Yamakage, I. S. Chong, Y.-W. Huang, C.-M.
Fu, T. Itoh, T. Watanabe, T. Chujoh, M. Karczewicz, and S.-M. Lei,
“Adaptive loop filtering for video coding,” IEEE J. Sel. Topics Signal
Process., vol. 7, no. 6, pp. 934–945, 2013.

[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell,
vol. 38, no. 2, pp. 295–307, 2016.

[7] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops, July 2017.

[8] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proc. IEEE/CVF Conf. Comput.
Vis. pattern Recognit., June 2018, pp. 2472–2481.

[9] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vision. Springer, 2018, pp. 286–301.

[10] D.-W. Kim, J. R. Chung, and S.-W. Jung, “GRDN: Grouped residual
dense network for real image denoising and GAN-based real-world noise
modeling,” in Proc. IEEE/CVF Conf. Comput. Vis. pattern Recognit.
Workshops, 2019, pp. 2086–2094.

[11] M. Zhao, G. Cao, X. Huang, and L. Yang, “Hybrid transformer-cnn for
real image denoising,” IEEE Signal Process. Lett., vol. 29, pp. 1252–
1256, 2022.

[12] J. Wu, Y. Wang, and X. Zhang, “Lightweight asymmetric convolutional
distillation network for single image super-resolution,” IEEE Signal
Process. Lett., vol. 30, pp. 733–737, 2023.

[13] F. Zhang, C. Feng, and D. R. Bull, “Enhancing VVC through CNN-based
post-processing,” in Proc. IEEE Int. Conf. Multimedia Expo, 2020, pp.
1–6.

[14] F. Zhang, D. Ma, C. Feng, and D. R. Bull, “Video compression with
CNN-based postprocessing,” IEEE MultiMedia, vol. 28, no. 4, pp. 74–
83, 2021.

[15] W.-S. Park and M. Kim, “CNN-based in-loop filtering for coding effi-
ciency improvement,” in Proc. IEEE Image, Video, and Multidimensional
Signal Processing Workshop, 2016, pp. 1–5.

[16] Y. Zhang, T. Shen, X. Ji, Y. Zhang, R. Xiong, and Q. Dai, “Residual
highway convolutional neural networks for in-loop filtering in HEVC,”
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3827–3841, 2018.

[17] D. Luo, M. Ye, S. Li, and X. Li, “Coarse-to-fine spatio-temporal
information fusion for compressed video quality enhancement,” IEEE
Signal Process. Lett., vol. 29, pp. 543–547, 2022.

[18] Z. Wang, M. Ye, S. Li, and X. Li, “Multi-frame compressed video
quality enhancement by spatio-temporal information balance,” IEEE
Signal Process. Lett., vol. 30, pp. 105–109, 2023.

[19] C. Liu, H. Sun, J. Katto, X. Zeng, and Y. Fan, “A convolutional neural
network-based low complexity filter,” arXiv preprint arXiv:2009.02733,
2020.

[20] J. Deng, L. Wang, S. Pu, and C. Zhuo, “Spatio-temporal deformable
convolution for compressed video quality enhancement,” in Proc. AAAI
Conf. Artif. Intell., vol. 34, no. 07, 2020, pp. 10 696–10 703.

[21] P. Svoboda, M. Hradis, D. Barina, and P. Zemcik, “Compression
artifacts removal using convolutional neural networks,” arXiv preprint
arXiv:1605.00366, 2016.

[22] S.-J. Cho, J. R. Chung, S.-W. Kim, S.-W. Jung, and S.-J. Ko, “Compres-
sion artifacts reduction using fusion of multiple restoration networks,”
IEEE Access, vol. 9, pp. 66 176–66 187, 2021.

[23] W. Ma, C. Chen, S. Zheng, J. Qin, H. Zhang, and Q. Dou, “Test-time
adaptation with calibration of medical image classification nets for label
distribution shift,” in Proc. Int. Conf. Med. image Comput. Comput.-
Assist. Intervention, 2022, pp. 313–323.

[24] J. Zhang, X. Nie, and J. Feng, “Inference stage optimization for cross-
scenario 3d human pose estimation,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 2408–2419.

[25] M. S. Rad, T. Yu, B. Bozorgtabar, and J.-P. Thiran, “Test-time adaptation
for super-resolution: You only need to overfit on a few more images,”
in Proc. Int. Conf. Comput. Vision Workshops, October 2021, pp. 1845–
1854.

[26] M. Choi, J. Choi, S. Baik, T. H. Kim, and K. M. Lee, “Test-time
adaptation for video frame interpolation via meta-learning,” IEEE Trans.
Pattern Anal. Mach. Intell, vol. 44, no. 12, pp. 9615–9628, 2021.

[27] Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time domain
adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. pattern Recognit.,
2022, pp. 7201–7211.

[28] F. Azimi, S. Palacio, F. Raue, J. Hees, L. Bertinetto, and A. Dengel,
“Self-supervised test-time adaptation on video data,” in Proc. Winter
Conf. Appl. Comput. Vision, 2022, pp. 3439–3448.

[29] D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive test-time
adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 295–305.

[30] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image restoration,” IEEE Trans. Pattern Anal. Mach. Intell,
vol. 43, no. 7, pp. 2480–2495, 2020.

[31] Y. Zhao, Y. Xu, Q. Yan, D. Yang, X. Wang, and L.-M. Po, “D2hnet:
Joint denoising and deblurring with hierarchical network for robust night
image restoration,” in Proc. Eur. Conf. Comput. Vision. Springer, 2022,
pp. 91–110.

[32] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang,
and L. Shao, “Learning enriched features for fast image restoration and
enhancement,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 45, no. 2,
pp. 1934–1948, 2022.

[33] S.-J. Cho, S.-W. Ji, J.-P. Hong, S.-W. Jung, and S.-J. Ko, “Rethinking
coarse-to-fine approach in single image deblurring,” in Proc. Int. Conf.
Comput. Vision, 2021, pp. 4641–4650.

[34] L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple baselines for image
restoration,” in Proc. Eur. Conf. Comput. Vision. Springer, 2022, pp.
17–33.

[35] J. Gurrola-Ramos, O. Dalmau, and T. E. Alarcón, “A residual dense
u-net neural network for image denoising,” IEEE Access, vol. 9, pp.
31 742–31 754, 2021.

[36] F. Jia, W. H. Wong, and T. Zeng, “DDUNet: Dense dense u-net with
applications in image denoising,” in Proc. Int. Conf. Comput. Vision,
2021, pp. 354–364.



2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

[37] C.-M. Fan, T.-J. Liu, and K.-H. Liu, “SUNet: Swin transformer UNet
for image denoising,” in Proc. IEEE Int. Symp. Circuits Syst., 2022, pp.
2333–2337.

[38] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in
transfer learning?” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 512–523.

[39] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vision. Springer, 2014,
pp. 818–833.

[40] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” Proc. Adv. Neural Inf. Process. Syst.,
vol. 27, 2014.

[41] F. Jin, P. Fieguth, L. Winger, and E. Jernigan, “Adaptive wiener filtering
of noisy images and image sequences,” in Proc. IEEE Int. Conf. Image
Process., vol. 3, 2003, pp. 349–352.

[42] D. Ma, F. Zhang, and D. R. Bull, “Bvi-dvc: A training database for deep
video compression,” IEEE Trans. Multimedia, vol. 24, pp. 3847–3858,
2021.

[43] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, “VTM common
test conditions and software reference configurations for sdr video
(JVET-T2010),” Joint Video Experts Team, 2020.

[44] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU SG16 Doc. VCEG-M33, 2001.

[45] N. Moran, D. Schmidt, Y. Zhong, and P. Coady, “Noisier2noise: Learning
to denoise from unpaired noisy data,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 12 064–12 072.


