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Abstract—Target speech separation approaches widely use the
encoder-separation-decoder framework. Generally, the crucial
idea of the framework is how to map the mixture of speech
signals to a distinctive representation. However, existing methods
fail to learn discriminative speech representations because they
ignore the distinctive characteristics (tone and timbre) related to
each target speaker, which are shared within the corresponding
mixture samples. To acquire shared speaker characteristics and
discriminative representations, we propose a novel “peer learn-
ing” method for this framework. Specifically, we construct a pair
of mixture samples involving the same target speaker and design
a two-branch speech representation prediction module. Then, the
more discriminative representation can be determined via com-
puting the signal-to-noise ratio and exchanged in the prediction
module to improve separation performance. Experiments on the
Libri2Mix dataset demonstrate the effectiveness of our method.

I. INTRODUCTION

Target speech separation (TSS) is to separate the voice of
a speaker of interest from an overlapped mixture of speech
signals. It can be applied to hearing aids, mobile communica-
tion, and speech recognition systems [1]. Humans can naturally
extract relevant information from the target speaker in noisy
environments. Researchers have identified the importance of
essential cues to a target speaker [2], [3], so the popular ap-
proaches usually transform the mixture into a separable space
leveraging acoustic, visual and spatial information [4]-[7].
Recently, TSS methods of encoder-separation-decoder have
gained more attention. Their separation performance heavily
relies on mapping the mixture of speech signals to a distinctive
representation, which is a still challenging research problem.

For a specific target speaker, the information in the different
mixture signals (tone and timbre) helps learn the distinctive
representations. By analyzing these characteristics, the model
can learn to recognize the specific frequency patterns and
harmonic structures that are unique to the target speaker.
Recent works [8]-[10] on target speech separation retain the
temporal architecture [11], [12] of the encoder-separation-
decoder (speech extraction network) and incorporate a convo-
lutional network (auxiliary network) for extracting the infor-
mation of target speaker. The speech extraction network first
encodes the mixture speech of signals by a 1-D convolutional
layer, and subsequently separates and decodes them by several
convolutional blocks and a decoder layer in representation
space. Finally, it outputs a single signal corresponding to the
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Fig. 1. The intuition of peer learning samples. The red sinusoidal signal
represents the target speech, while the blue signal and black signal are
interference speech at different frequencies. Peerl represents a mixture of red
sinusoidal signal and blue signal. Peer2 represents a mixture of red sinusoidal
signal and black signal. The green-boxed regions indicate harmonic structures
and frequency patterns where two samples can mutually enhance each other.

target speech, effectively isolating a clean signal from the
mixture.

However, when speakers have similar voice characteristics,
existing methods become challenging to identify a specific
target speaker from a mixture of signals. These methods use
each mixture sample of the target speaker in the training
independently, so they cannot share enough useful character-
istics on speech qualities (tone, timbre, and pitch) resulting in
non-discriminative representations. Moreover, the conventional
encoder-separation-decoder framework, while adept at distin-
guishing the target speech from a mixture of signals by estimat-
ing masks, is inherently constrained in capturing shared speech
representations across diverse mixture samples. This limitation
stems from the architecture’s primary focus on differentiating
the target signal rather than extracting commonalities that may
exist within the mixture.

In this work, we introduce a novel learning paradigm
termed “peer learning” to extract shared attributes and learn
discriminative representations from diverse speech mixtures.
Our approach is underpinned by the creation of a novel mixing
dataset that pairs mixture samples centered around the target
speaker. Our core concept is to explore the potential for two
mixture samples to engage in a reciprocal learning process,
akin to peers sharing insights, hence the term “peer learning”
samples. As depicted in Figure 1, we present two mixture



samples, peerl and peer2, each a blend of the target speaker’s
speech with that of a different, non-target speaker or interfering
voice (for instance, peerl is a mix of Speaker 1 and Speaker 2,
while peer2 combines Speaker 1 with Speaker 3). Notably, we
propose that the harmonic structures and frequency patterns
within the green-boxed regions of these mixture samples can
be interchangeably leveraged to bolster the accuracy of target
speech prediction. To optimize the utilization of “peer learn-
ing” samples, we have engineered a dual-branch architecture
for speech representation prediction designed to impart dis-
tinctive characteristics. In this bifurcated approach, we derive
predicted speech via both the representation prediction module
and the decoder, subsequently quantifying the signal-to-noise
ratio (SNR) based on the predicted speech and the actual
target speech. The representation associated with a superior
SNR is selected, as it is indicative of a higher-quality speech
representation. This enhanced representation is then fed back
into the other branch to refine the original, less discriminative
representation. Through this mechanism, we facilitate the
exchange of discriminative representations between branches,
thereby enhancing the overall speech separation performance.
Experimental results show that our peer learning framework
outperforms the performance of baselines for the target speech
separation on the Libri2Mix dataset [13].

II. RELATED WORK

Target speech separation. TD-SpeakerBeam [8] acquires
more discriminative speaker embedding vectors using an aux-
iliary convolutional network and a multi-task loss with speaker
identification loss. It follows the Conv-TasNet to construct
multiple convolutional filters to transform the temporal signals
within a time slot into a learnable representation. SpEx+ [9]
shares the same weight in the latent domain by twin speech
encoder, importantly it encodes multi-scale information in
a uniform latent feature space. Besides, the refining neural
network [14] demonstrates that high-order embedding space
can leverage the discriminative representation for speech sep-
aration. However, in a mixture speech, the same target speaker
can be mixed with any speaker. These works do not consider
shared knowledge such as different frequency patterns and
harmonic structures by constructing richer training pairs.

The paradigms of learning. Self-supervised learning [15]—
[20] constructs a pair of positive and negative samples by
selecting one speaker’s utterance as the anchor, and selecting
speech from the same person but a different utterance as the
interfering speech. To capture speech characteristics, they in-
troduce a speaker consistency loss on the speech embeddings.
The teacher-student network [21], [22] can unidirectionally
transfer knowledge from the teacher model to the student
model. Mutual learning [23], [24] approaches can use a group
of students to learn and share knowledge simultaneously with
each other during the training phase, but they require the
selection of two models when the testing phase and the
parameter of the threshold must be manually set. However, the
mainstream frameworks focus on masking interference speech

while ignoring learning the shared presentations to improve
separation performance.

III. METHODS

In this section, we first give a notation of target speech
separation. We adopt the mainstream framework of encoder-
separator-decoder as the backbone and introduce the proposed
peer learning (PL) method to obtain shared attributes and learn
discriminative representations. Fig.2 shows the overview of
our PL method. Then we explain the speech representation
prediction mechanism in detail.

A. Problem Formulation

Notations. Target speech separation is to isolate the speech
of a target speaker from a mixture of multiple overlapping
speakers and optionally an additional noise. First, X denotes
the mixed speech signals, and S is reference clean sources. The
adaptation utterance about the target speaker will be denoted r.
We aim to separate the predicting source S for each speaker
from X by leveraging the target speaker information r. To
make it simple, a two-speaker setup is considered.

B. Peer Learning Method

Some advanced learning methods have provided perfor-
mance improvements for target speech separation. However,
these methods have certain limitations. These works ignore
more discriminative representation can be beneficial to sep-
aration performance further. The works mentioned above do
not leverage shared harmonic structures and frequency patterns
in a pair of mixture samples of the same target speaker. Our
intuition, as previously highlighted, posits that the introduction
of a pair of mixture samples pertinent to the target speaker
can unlock superior representations. This strategy is predicated
on the notion that by harnessing the intrinsic relationships
between samples, we can distill representations that are more
conducive to effective speech separation.

Constructing “peer learning” samples. We construct pairs
of training data that contain a mixture sample of the same
target speaker and different interference speakers. Generally,
there are n speakers. Suppose we have one speech segments
of target speaker s;(t) for speaker 4, two speech segments of
interference speaker s;(t) and sy (t) for speaker j and k. Note
that 7 and k£ may be the same speaker. We create two mixture
signals x1(t) for speaker ¢ and speaker j, xo(t) for speaker @
and speaker k, which is defined in:

xl(t) = Sl(t) + Sj(t)v (Z #]7%] € n)
2o (t) = s;i(t) + sk (t), (i £ k,i,k € n)

Shared two-branch Framework. We adopt the general
framework of neural target speech separation, mainly including
a mixture encoder, a fusion layer, and a target extractor. Specif-
ically, the peer mixture speech signals are then transformed
into the embedding space. Then we use the fusion layer to
introduce the information of the target speaker. Finally, we
use the extractor module to estimate target speech. The entire
pipeline of peer learning with shared speech representation
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The pipeline of peer learning via shared speech repressentation prediction. The purple bidirectional arrow illustrates the sharing discriminative

representation in this space. (a) The encoder of our method with shared weights for “peer learning” samples (different mixture samples of the same target
speaker). (b) The two-branch decoder for “peer learning” samples. (c) The detail of the predictor (the purple block).

prediction is as shown in Fig.2, which is designed based on
the famous framework of TD-speakerBeam [8]. The proposed
two-branch network employs an encoder with shared weights,
indicating that identical network structures are deployed to
handle different input datasets. This approach ensures that the
same underlying model processes various inputs, promoting
efficiency across the network’s operations. The speech en-
coder denotes extracting the mixture representations by 1-
D convolutional filters, speaker encoder uses the same 1-D
convolutional encoder to accept the enrollment utterance of
the target speaker. Then the separator transforms further the
representation into the separable representation space incorpo-
rating the adaptation layer and the stacked 1-D convolutional
blocks. They perform the following equations:

X@mb = EnC(QL‘; eenC)
Spkemp = SpkEnc(rp; QSPkenC) 2
Eemp = Sep(Xemba Spkemp; HSep)

where Enc and SpkEnc respectively represent the convolu-
tional network and each network with parameters #°P*¢"¢ and
gSrkene For X, € RP*L | D denotes dimension, L is
the encoded temporal length. And E.,,, € RP**L i the
output of separator Sep in gray modules in Fig.2. Then, we
define the mask branch of the representations in green space
B, and the purple space C' denotes the predictor branch of the
representations. We discuss the details of the prediction branch
in the following paragraphs.

Shared Speech Representation Prediction. Motivated
by self-supervised learning methods BYOL [25], this work
employs two different networks and adopts a stop-gradient
strategy to introduce asymmetry for representation learning.

Therefore, we also attempt to introduce asymmetry in the two-
branch network to obtain discriminative representations. From
this perspective, the reason why directly adding a speech rep-
resentation prediction module is that the better representation
can guide the worse one, which plays a role in improving the
worse representation. We directly add a speech representation
prediction module to guide the original representation with
the better one. For a clearer presentation, suppose we have
one speech segment of target speaker s(t) for speaker 1,
two speech segments of interference speaker so(t) and ss(t)
for speaker 2 and 3. We create two peer mixture signals:
X1 (t) = Sl(t) + Sz(t) and J?Q(t) = 31 (t) + S3(t). We
have obtained the F.,,; from the shared two-branch network,
at this point, so we denote them e; and ey for two peer
learning mixtures. After the separator module, we generate
a speech representation using a prediction network with the
convolutional layer. Note that this representation is near to the
ground truth of the target speech before the decoder, so the
discriminative speech representation can be shared.

More discriminative representations can be understood as
features that, after being mapped by the predictor, more closely
align with the actual target speech. This enhanced alignment
signifies a higher fidelity in the representation, enabling more
accurate speech processing. Fig.2 (b) illustrates a predictor that
introduces a novel mapping of the representation prior to the
decoder. Since the representation at this stage is already quite
close to the actual speech, it can be leveraged as new knowl-
edge to share. In other words, a more discriminative speech
representation is effectively evaluated through this comparison,
highlighting the enhanced fidelity of the predictor’s output,
as shown in Fig.2 (c). The structure of the predictor is the
linear neural network. The predicted output is then fed into



the decoder as input and compared with the true labels to
calculate the SNR, which serves as a metric for assessing the
quality of the speech representation.

We elaborate in detail on the speech representation predic-
tion module in Fig.3. We first build a prediction branch to
generate the representations eq1, eaa = Pred; (e1), Pred; (e2).
Further, we decide on the more discriminative representation
by calculating SI-SNR with the target speech. Specifically, the
representation through predictor 1 and input the decoder to
acquire the predicted speech. We compare the SNR values
of the two representations by predicted speech and the target
speech. In the Fig.3, when SI-SNR1 is bigger than SI-SNR2, the
better representation eq; with star marker is used to formulate
for the other branch. Moreover, we concatenate the star marker
representation with the original blue representation, after that,
we can acquire the e;, 6/2 using a predictor 2.

€}, es = Predy(ern, 1), Preda (e, e11) 3)

Then, we integrate them into the mask branch for recovering
target speech combining with e; and es. In such a way, it can
be viewed as a speech representation augmentation.

Training and Inference. During the training, we easily
construct peer learning samples of the same target speaker.
However, in the validation and inference, it is usually not
feasible to create these samples. Therefore, during the phase of
inference, we directly concatenate the mixture’s representation
itself. It means that we directly double the representation after
predictor 1 to match the dimension.
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Fig. 3. The mechanism of the speech representations prediction by comparing
the SNR.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. The Libri2Mix[13] dataset extends the utility of
the LibriSpeech corpus into the domain of speech separation.
Libri2Mix dataset [13] is introduced to address the general-
ization issue in WSJ0-2mix dataset[26]. The train-100 subset
total has 13900 utterances with 58 hours of data from 251
speakers. The development and test subsets have 3,000 mixture
utterances with 11 hours of data respectively, which is from 40
unseen speakers. The sampling rate of speech audio is 8 kHz.
We generate all mixtures using ‘minimum’ mode. We only
construct peer samples in training data. During the mixing of

data, the specific details have been thoroughly explained in the
section III-A. The first speaker is chosen as the target speaker,
the second speaker is regarded as the interference speaker. The
reference speech of the target speaker must be a randomly
chosen utterance distinct from the one in the mixture. The
other peer sample has the same first speaker as mixtures and
chooses a different utterance from the interference speaker.
The development and test subsets remain consistent with the
original dataset setting.

Baselines and Setup. We compare it with baseline ap-
proaches of target speech separation, including sSDPCNN [27],
TD-SpeakerBeam [8], SpEx+ [9]. Some of the results are
obtained from the reported papers. Our all hyper-parameters
selections follow the original TD-SpeakerBeam. The training
process uses chunks with a 3.0 seconds duration. We adopt
Adam optimizer with a learning rate of le-3. The batch size
is 8. The epoch is set to 200. Early stopping is used in the
training process when the validation loss doesn’t decrease in
20 consecutive epochs. A gradient clip with a maximum L2-
norm is used to avoid gradient exposure.

Evaluation Metrics. We train all time-domain models using
negative SISNR loss. For evaluation metrics, we employ the
scale-invariant SDR (SI-SDR) and PESQ metrics. SI-SDR
assesses from a signal perspective, while PESQ evaluates them
from perceptual quality. The higher evaluation value represents
the better quality of speech separation.

B. Results Analysis

1) Performance Comparison: We explore the performance
of different target speech separation methods on the Libri2Mix
test dataset, the overall results are shown in Table.I. We denote
the peer learning method as PL. In the last two rows of Table.I,
our approach outperforms the sSDPCNN method in the time-
frequency domain, as well as the TD-SpeakerBeam method in
the time domain. Our approach (PL) improves the performance
to 1.0 dB and 0.5 dB SI-SDRIi respectively compared with TD-
SpeakerBeam and SpEx+. In the meantime, we obtain 0.13
and 0.32 PESQ improvement compared with TD-SpeakerBeam
and SpEx+ respectively. Furthermore, it can be concluded
that our approach can be integrated into existing time-domain
frameworks easily. These findings suggest that PL. can augment
performance by learning more discriminative representation.

TABLE 1
PERFORMANCE COMPARING ON THE LIBRI2ZMIX DATASETS.

Methods | SISDR PESQ
Mixture 0.001 1.603
sDPCCN 11.65 2.74
TD-SpeakerBeam 12.86 2.75
SpEx+ 13.41 2.94
TD-SpeakerBeam + PL | 13.94 3.07

2) Speech Representation Prediction Analysis: We further
investigate the usage strategy of the speech representation pre-
diction. Specifically, there are three strategies. First, cat itself:
both branches double their representation without knowledge



sharing. Secondly, cat anyway: both branches use a random
representation from the other. Finally, cat better: we utilize
a better representation by speech representation prediction
module. We train the three strategies using SISNR as the
same loss function. It can be observed that the performance
progressively is boosted as shown in Table.Il, indicating the
effectiveness of our strategy via the speech representation
prediction module.

TABLE I
RESULTS ON THE DIFFERENT CONFIGURATIONS.

Model | Operations SI-SDR PESQ
Mixture - 0.001 1.603
TD-SpeakerBeam - 12.86 2.75
TD-SpeakerBeam + PL cat itself 12.84 2.74
TD-SpeakerBeam + PL | cat anyway 12.89 2.77
TD-SpeakerBeam + PL cat better 13.94 3.07

3) Analysis of training process: To further validate how to
share speech representation, we analyze the training process of
the different representations. As shown in Fig.4, after adopting
the asymmetric training method of peer learning, we have 4
outputs: the orange line represents the better peer, and the
gray one represents the better mask. Besides, the yellow line
denotes the worse peer while the blue one is a worse mask.
Firstly, for the results of the mask branch, the better peer
outperforms the worse peer by around 1.2 to 1.8 dB. For the
map branch, we find that the gap between the representations
of the better peer and the worse peer gradually decreases
during the training process, from around 1.3 dB to 0.7 dB.
The green line represents a remapped result obtained by using
the better representation. We can see that its performance is not
only better than the mapping performance of the worse peer
but also surpasses that of the better peer itself. Upon closer
examination, we observed that the representations of the two
peers indeed have a synergistic effect.
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Fig. 4. SI-SDR value of through the five representations on training set in

the training phase.

C. Complexity analysis

We calculate the increase in computational load brought
by the additional predictive branch, as can be seen in the
Table.III, there is only an increase of 0.7 M parameters, which
is completely acceptable.

TABLE III
COMPLEXITY ANALYSIS ON THE DIFFERENT CONFIGURATIONS.

Model Trainable Paras (M) Total Paras (M)
TD-SpeakerBeam 7.1 18.3
TD-SpeakerBeam + PL 7.8 19.0

V. CONCLUSION

In this paper, we propose a “peer learning” method to
acquire the shared characteristics and the discriminative rep-
resentations through a two-branch speech representation pre-
diction module. This scheme first constructs the two mixture
samples related to the same target speaker for peer learning.
A separable speech representation is generated by a predictor
module, which is a discriminative representation for predicting
the target speech waveform. Notably, the enhanced represen-
tation from one branch is leveraged to bolster the separation
performance of its counterpart. We verify that the speech
representations can be exchanged knowledge of each other in
two branches. Extensive experiments have demonstrated the
effectiveness of the proposed peer learning method. In the
future, we plan to extend our methods to multi-channel and
more speakers for target speech separation.
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