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Abstract—Models used in real-world applications can experi-
ence concept drift, where the deployment environment differs
from the training environment due to previously unseen input
data distributions or changes in the data generation process.
Sequential Monte Carlo squared (SMC2) is a Bayesian algorithm
which infers the distribution of both the states and parameters of
non-linear, non-Gaussian state space models. A Sequential Monte
Carlo (SMC) sampler operates on the static parameter space and
samples the parameters with which a number of particle filters
(PFs), tackle the dynamic state inference problem. PFs often do
not consider the influence of concept drift on the parameters of
interest. Models that consider drift will do so in a purely online
context and can suffer from slow convergence. By formulating
PFs as hierarchical models, with explicit dynamics to describe
parameter evolution, the use of batch parameter estimation
techniques like SMC2 is enabled. We demonstrate our approach
by applying five concept drift models to an epidemiological disease
model with time-varying transmission rates.

I. INTRODUCTION

Bayesian inference is well-suited for quantifying uncer-
tainty because it outputs distributions rather than single-
point estimates. This approach allows for the integration of
prior knowledge, the connection of observations to quantities
through likelihood distributions, and the generation of posterior
distributions. It can be utilized to infer unknown quantities in
both static and dynamic contexts [1].

Particle filters (PFs) [2] are a widely used Bayesian method
for tracking the dynamic evolution of state spaces in non-
linear and non-Gaussian state space models (SSMs). They
have achieved widespread usage in a variety of fields [3]–[5].
Typically, in PFs, the parameters governing the evolution of
the dynamics are fixed. However, in some instances, PFs can
be expanded to infer these parameters. One approach is to
augment the state space with the parameters and consider their
co-evolution [6], [7].

Bayesian parameter estimation using PFs can occur online
[8]–[11] and offline. One such online recursive method is the
nested particle filter (NPF) which uses one PF to estimate
the parameters and an inner particle filter to track the states
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[12], [13]. Offline methods include particle marginal methods,
such as particle Markov Chain Monte Carlo (p-MCMC) [14]
and Sequential Monte Carlo squared (SMC2) [15], which are
batch methods that require access to the full data-set at each
evaluation. Similarly to the NPF, an inner particle filter tracks
the states but an outer static Monte Carlo method deals with
parameter estimation. SMC2 is similar to the NPF in that they
both contain two Sequential Monte Carlo methods but SMC2

possesses favourable convergence properties while the NPF has
favourable time complexity [12].

Concept drift refers to changes in the statistical environment
of the problem at hand, a term commonly used in classification
contexts [16]–[18]. In the context of PFs, concept drift has
been modelled in online streaming contexts [19]–[21] and
rarely associated with batch inference [22]. A pertinent ex-
ample of a changing statistical environment is the modelling
of communicable diseases. It has been noted in [23] that the
use of concept drift in compartmental disease modelling is
under-utilized. Two related examples can be found in [22],
[24] where the abrupt concept drift (see Section III) is used to
define the sudden change in the transmissibility of Ebola and
HIV. Particle-MCMC was employed to infer the parameters of
the disease model as well as the hyper-parameters governing
the sudden change in transmissibility. As interventions from
policymakers are introduced, the disease dynamics changes
over time. It is therefore common practice to define β as time-
varying [25]–[28].

The contribution of this paper is to explicitly define an
epidemiological model with frequently encountered types of
concept drift and incorporate them as part of a hierarchical
particle filter to perform batch Bayesian inference with SMC2.
The paper continues by describing the SMC2 algorithm in
Section II and defining the dynamic models used to represent
concept drift in Section III. The compartmental epidemiolog-
ical model is defined in in Section IV and numerical results
are provided in Section VI. Conclusions and future work are
given in Section VII.

II. SMC2

SSMs have been used to model unobserved latent states of
dynamic systems in a wide range of research fields [29]. An
SSM consists of a state equation,

xt | xt−1 ∼ p(xt | xt−1,θ), (1)



which is parameterized here by θ and models the Markovian
movement of the dynamic system from the previous state,
xt−1, to the current state, xt. SSMs include an observation
equation

yt | xt ∼ p(yt | xt,θ), (2)

which describes how the observation, yt, is linked to state xt.
Analysing a set of observations y1:T ∈ RDy , SMC2 uses

an inner PF to estimate the unobserved states of a system,
x1:T ∈ RDx , (Section II-A) and an outer SMC sampler to
estimate the parameters, θ ∈ RD (Section II-B).

A. SMC Sampler

At each iteration k, SMC2 targets

π(θ) ∝ p(y1:T |θ)p(θ), (3)

via sequential importance sampling and resampling steps. An
unbiased estimate of the marginal likelihood p(y1:T |θ) is
provided by the PF. In this section, the posterior distribution
over the π(θ|y1:T ) is defined as π(θ).

The joint distribution of all states until k = K is defined as

π(θ1:K) = π(θK)

K∏
k=2

L(θk−1|θk), (4)

where L(θk−1|θk) is the L-kernel, which is a user-defined
probability distribution. The choice of this distribution can
affect the efficiency of the sampler [30].

At k = 1, N samples ∀i = 1, . . . , N are drawn from a prior
distribution q1(·) as follows:

θi1 ∼ q1(·), ∀i, (5)

and weighted according to

wi
1 =

π(θi1)

q1(θi1)
, ∀i. (6)

At k > 1, subsequent samples are proposed based on sam-
ples from the previous iteration via a proposal distribution,
q(θik|θik−1), as follows:

θik ∼ q(·|θik−1). (7)

The proposal is commonly chosen to be Gaussian with a
mean of θik−1 and a covariance of Σ ∈ RDxD, such that

q(θik|θik−1) = N (θik;θ
i
k−1,Σ), ∀i. (8)

These samples are weighted according to

wi
k = wi

k−1

π(θik)

π(θik−1)

L(θik−1|θik)
q(θik|θik−1)

, ∀i. (9)

A common, suboptimal approach to selecting the L-kernel in
(9) is to choose the same distribution as the forwards proposal

L(θik−1|θik) = q(θik−1|θik), ∀i, (10)

so that, when q(·|·) is symmetric, the weight update in (9) is

wi
k = wi

k−1

π(θik)

π(θik−1)
, ∀i. (11)

Estimates of the expectations of functions, such as moments,
on the distribution are realised by

f̃k =
∑N

i=1
w̃i

kθ
i
1:k, (12)

where the normalised weights w̃i
k are calculated by

w̃i
k =

wi
k∑N

i=1w
i
k

, ∀i. (13)

SMC2 computes the Effective Sample Size (ESS) as a measure
of the efficacy of the sampler

N eff =
1∑N

i=1

(
w̃i

k

)2 . (14)

As iterations continue, one weight tends to unity while all
other to zero. This is known as particle degeneracy and can
be mitigated by resampling. Resampling is undertaken if N eff.
In this paper, systematic resampling scheme outlined in [31]
is employed. Samples are assigned an unnormalized weight of
1
N after resampling.

B. Particle Filter

The PF uses a set of Nx particles to recursively represent
any nonlinear, non-Gaussian SSM as Nx → ∞. At every
time step t, particles are drawn from a proposal distribution,
q (x1:t|y1:t,θ) and weighted according to

wj
t = wj

t−1

p
(
yt|xj

t ,θ
)
p
(
xj
t |x

j
t−1,θ

)
q
(
xj
t |x

j
t−1,yt

) , (15)

In this example, we set the transmission model to equal the
proposal which simplifies the weight update in (15) to

wj
t = wj

t−1p
(
yt|xj

t ,θ
)
. (16)

State estimates are made by a weighted sum of functions on
the particles∫

p (x1:t|y1:t,θ) f (x1:t) dx1:t ≈
∑Nx

j=1
w̃j

t f
(
xj
1:t

)
, (17)

where the normalized weights are calculated as in (13) (with
w̃j

t in place of w̃i
t).

An unbiased estimate of the marginal likelihood can be
obtained from an average of the unnormalized weights

p (y1:t|θ) =
∫

p (y1:t,x1:t|θ) dx1:t ≈
1

Nx

∑Nx

j=1
wj

t . (18)

As with the SMC sampler, the ESS in the PF can be calculated
using (14) and resampling employed if N eff

x is less than Nx/2.
In this paper, multinomial resampling is chosen within the
PF. To keep the total unnormalized weight constant (such that
the approximation (18) is the same immediately before and
after resampling), each newly-resampled sample is assigned
an unnormalized weight

1

Nx

∑Nx

j=1
wj

t , (19)

such that the normalized weights after resampling are 1/Nx.

2



III. CONCEPT DRIFT

Concept drift is a broad term that, in a general machine
learning context, describes changes over time in the relation-
ship between input data and the target variable. Survey papers
have sought to characterize the various types of drift and the
timescales on which they occur [16], [17].

A change in the parameters governing the dynamic system
in (1) (i.e. θt−1 ̸= θt) can be thought of as an example of
real concept drift. We define θ = {ϕt,ψ}, with ϕt denoting
time-varying parameters and ψ non-time-varying parameters.
Equation (1) can be extended by (20) to include effective
dynamics on the parameter space

ϕt | ϕt−1 ∼ p(ϕt | ϕt−1, τ ). (20)

We parameterise an SSM as hierarchical, with equations (1),
(2) and (20), and perform inference on the now static set of
parameters θ = {τ ,ψ}.

Reference [8] proposes the concept drift models defined in
(22)-(25) as ways of evolving a parameter to generate synthetic
data. These models are analogous to the aforementioned types
of drift timescales and are presented below:

1) Drift-less:
ϕt = l, (21)

2) Incremental:
ϕt = l + uτ t, (22)

3) Recurring:

ϕt =
u− l

2
s(
2πt

τ
) +

u+ l

2
, (23)

4) Outlier:

ϕt =

{
l, t = τ

u, else
, (24)

5) Abrupt:

ϕt =

{
l, t < τ

u, else
, (25)

6) Gradual:

ϕt =
u− l

2
s(

2πt

τ0 + τ1t
) +

u+ l

2
, (26)

where s(t) is the square wave function, u and l are the upper
and lower values the parameter may take, respectively and τ
is the drift parameter of interest. A graphical representation
of how these concept drift models change a parameter can be
seen in Figure 1. The red lines in Figure 1 show the different
timescales on which concept drift occurs for βt in the SEIS
disease model outlined in Section IV. Figure 1(a) shows a non-
time varying parameter (i.e. βt is fixed for the duration of the
simulation), Figure 1(b) depicts a sudden shift from one regime
to another at a specific time point, while Figure 1(c) illustrates
a gradual drift from one regime to another and back, with the
parameter spending increasingly longer periods in the upper
regime over time. In Figure 1(d), a slow linear variation in the
parameter is displayed. Figure 1(e) depicts a sudden jump to
another regime followed by an immediate return, while Figure
1(f) illustrates equal time spent in both regimes.

IV. SEIS MODEL

The stochastic Susceptible, Exposed, Infected, Susceptible
(SEIS) disease model utilized in this paper is a variant of the
SIR model [32]. It simulates the movement of Npop individuals
between the Susceptible, Exposed and Infected latent state
compartments which take values St,Et, It ∈ [0..Npop]

The total count of individuals moving compartments is
governed by the parameters θ = {τ ,γ,σ}. We note that τ
is a static parameter which governs the rate of change of βt

i.e. ϕt = βt. The corresponding binomial distributions are

n(S → E) ∼ Binomial(St−1, 1− exp

(
−βt−1It−1St−1

Npop

)
),

(27)
n(E → I) ∼ Binomial(Et−1, 1− exp(−γ)), (28)
n(I → S) ∼ Binomial(It−1, 1− exp(σ)). (29)

The complete discrete, stochastic SEIS model is

St = St−1 − n(S → E) + n(I → S), (30)
Et = Et−1 + n(S → E)− n(E → I), (31)
It = It−1 + n(E → I)− n(I → S). (32)

The likelihood is

yt|xt ∼ Poisson (yt; It) . (33)

V. COMPUTATIONAL SETUP

The experiments were conducted using the distributed mem-
ory SMC2 framework outlined in [33], [34]. The code is
provided here1. The analysis was performed on a distributed
memory cluster equipped with two Xeon Gold 6138 CPUs,
providing 384GB of memory and 40 cores.

The experimental configuration comprises T = 150 obser-
vations, Nx = 4096 particles in the PF, N = 256 samples in
the SMC sampler and K = 50 iterations. The step-size for
the RW proposal was 0.1. The non-time varying parameters
are γ = 0.1 and σ = 0.1 with priors q1(θ

i
1) = Γ(1, 0.1).

The drift parameters have bounds of l = 0.1 and u = 0.8 and
priors of q1(θi1) = Γ(1, 0.1) and q1(θ

i
1) = Γ(8, 0.1). The drift

parameters have true values of τ = 0.3, [ 13 , 0.3],
u−l
T , 0.3, 1

3 for
abrupt, gradual, incremental, outlier and recurring scenarios,
respectively. The prior distributions are q1(θ

i
1) = Γ(3, 0.1) for

all scenarios except incremental drift which is given the prior
q1(θ

i
1) = Γ(0.1, 0.1). The initial distribution of Npop = 1000

individuals in each compartment at t0 was drawn from

Multinomial(x0;Npop,p), (34)

where p = [0.9, 0.05, 0.05].

VI. RESULTS

Over 10 Monte carlo runs, all the parameters when including
drift (θ = {τ ,γ,σ, u, l}) and when drift-less (θ = {γ,σ, l})
were estimated with SMC2 for each concept drift scenario.
Using the parameter estimates, the PF predicts the states of

1https://github.com/j-j-murphy/Explicit-Concept-Drift
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Fig. 1: Infection observations (blue) and corresponding βt (red) generated for a trajectory of length T = 300 with γ = 0.1,
σ = 0.1, l = 0.2 and u = 0.8. (a) In the drift-less scenario there is no τ (b) in abrupt τ = 0.5, (c) in gradual τ = [0.2, 0.25],
(d) in incremental τ = 0.005, (e) in outlier τ = 0.5 and (f) in the recurring drift scenario τ = 0.2.

TABLE I: Mean Square Error (MSE) of different drift scenar-
ios.

Scenario Including Drift Drift-less
Abrupt 1.655× 103 5.502× 104

Gradual 7.051× 103 7.754× 104

Incremental 5.791× 104 3.426× 104

Outlier 1.150× 103 1.263× 103

Recurring 1.922× 104 6.745× 104

the disease model, which can be seen in Figure 2. It is evident
that when including drift, the PF can more accurately estimate
the true states as outlined in Table I when comparing the
Mean Square Error (MSE). However, this is not the case with
incremental drift which actually performs worse than the drift-
less PF. We hypothesis that the is due to the estimate of the
susceptible compartment changing too quickly. This is likely
due to the random walk proposal which is suitable for the other
parameters but not the far finer-scaled τ parameter, giving an
estimate an order of magnitude lower of 5.155× 10−2 against
a true value of 4.667× 10−3.

VII. CONCLUSION

In this paper, we explicitly define a hierarchical PF with
time-varying parameters governed by concept drift models.
We apply these methods to a compartmental disease model,
demonstrating that the PF can track unobserved states and
estimate parameters using SMC2.

The scenarios in this paper are simplified, by assuming that
the drift type is known apriori and considering only one type
of drift at a time. Natural extensions include a model selection

method like the likelihood ratio outlined in [35], modeling
multiple types of drift simultaneously and exploring drift
beyond the binary high-low framework. The SEIS example
model is discrete so prevents the the use of improved, gradient-
based proposals in the PF and SMC sampler as in [36],
[37]. One method to overcome this would be to use HINTS
[38]. Further verification of the approach could be found in
applications to real world scenarios.
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