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Abstract—Recently, document images have been widely used in
various online applications. Digital watermarking is an important
forensic technique to verify the authenticity of a document image.
However, the recapturing operation leads to a significant risk in
document images since the extraction accuracy of recaptured
digital watermarking drops significantly. In this work, we pro-
pose robust watermark against halftone distortion by utilizing
surrogate models and end-to-end watermarking frameworks.
Firstly, we employ differentiable surrogate models to generate the
halftone distortion. Then, surrogate models are incorporated into
end-to-end watermarking frameworks to enhance the robustness
of the watermark in the print-camera scenario. To evaluate
the robustness of the proposed method, we conduct a series of
experiments in real-world scenarios. The experimental results
confirm that our method can improve the robustness of the
watermark across different devices, datasets, printing sizes, and
watermark capacities.

I. INTRODUCTION

The document image is an important information carrier
widely used in e-business and e-government applications.
However, due to the development of image editing tools and
image generation methods, document image security is facing
great threats. Active image forensic techniques like digital
watermarking and passive image forensic techniques like tam-
per detection are commonly utilized to ensure the security
of document images. However, researchers have found that
recapturing operations significantly reduces the effectiveness
of existing document image forensic methods. For instance,
Zhao et al [1]. utilize a deep learning scheme to edit practical
document images and conceal the traces of tampering by re-
capturing operations. Moreover, as shown in Fig. 1, recaptured
watermarked images suffer severe distortions, resulting in a
significant decline in extraction accuracy. Specifically, the error
bit rate of watermarks in small printing sizes is close to 50%.
Therefore, research on document image forensics techniques in
recapturing scenarios is of practical significance and demands
our attention. In this work, we focus on improving the robust-
ness of digital watermarking in the print-camera scenario.

Previous research in digital watermarking has mainly fo-
cused on robustness against digital channel distortion, which
mainly consists of Gaussian noise, Gaussian blur, and other
factors. Recently, capturing a printed image with a mobile
phone has gained popularity as information acquisition. Com-
pared to digital channel distortion, print-camera channel distor-
tion is much more complex, including perspective distortion,
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Fig. 1. The practical application of robust watermark against halftone
distortion. The images are embedded with 200 bits with printing sizes of
1.5 × 1.5 cm2 and 0.75 × 0.75 cm2. The bit error rate is shown next to the
corresponding watermark image. (a) The application example of StegaStamp
[2]. (b) The application example of our method.

color distortion, and environmental noise, which brings sig-
nificant challenges to digital watermarking. Therefore, robust
watermark in the print-camera scenario has gained great at-
tention in recent years. However, most existing works focus
on the distortions introduced by the shooting process while
neglecting halftone distortion. Through our research on the
distortion produced by the print-camera process, we find that
halftoning technology is widely used in current mainstream
printers, which means that the halftone distortion is a key part
of the print-camera distortion.

Given the above limitations, we propose robust watermark
against halftone distortion. This approach aims to enhance the
robustness of digital watermarking and improve the security of
current image forensic systems. We train a CycleGAN-based
simulation network for the halftone distortion and employ end-
to-end watermarking frameworks based on deep learning. To
evaluate the robustness of the proposed method, we conducted
a series of experiments in real-world application scenarios,
including different devices, datasets, printing sizes, and wa-
termark capacities. The experimental results demonstrate that
the proposed method achieves better performance than SOTA
methods, and the average bit error is lower than 20% in most
scenarios.

The main contributions of this work are as follows:
1) We employ a simulation network of the halftone distortion

based on CycleGAN to enhance the robustness of the water-
mark. Moreover, this simulation network can be incorporated
into different deep learning-based watermarking frameworks.

2) Experimental results confirm that our method achieves
better robustness in several real-world scenarios, including
different devices, datasets, printing sizes, and watermark ca-



pacities.

II. THE PROPOSED METHOD

A. Surrogate Model for Halftone Distortion

1) The Printing Process (Inkjet, LaserJet): The halftoning
technique is utilized by printers to simulate a color image in
continuous tone through halftone dots with variable sizes or
spacing. Dispersed dot and cluster dot halftoning [3] are two
classes of halftoning patterns that are widely used by inkjet
printers and laserjet printers, respectively.

Mainstream inkjet printers employ the error diffusion
halftoning technique to produce the dispersed dot halftoning
pattern. During the error diffusion process, each color channel
is processed with the following steps [3]. First, each pixel
value of the input image is set to 0 or 255 according to the
threshold value of 128. Second, the error value is calculated
between the assigned value in the first step and the actual value.
Finally, according to a predefined error filter kernel, the error
is accumulated and diffused to the neighborhood pixels. In our
implementation, we adopt the error filtering kernel defined by
Floyd and Steinberg [4], and weights in this filter are [0, 0,
7/16; 3/16, 5/16, 1/16].

Mainstream laserjet printers produce the cluster dot. When
we consider a single-channel image patch, the representation
of the halftone can be described as follows

IL(x) =
∑
m

∑
n

δ(x −ma − nb)⊗H(x), (1)

where x = (x, y) represents the horizontal and vertical co-
ordinates of each pixel of the image, ‘δ’ denotes the Dirac
delta function, spatial halftone vectors a and b are the density
and direction of the halftone array, m,n represent indices of
halftone dots along the direction of a and b, respectively,
‘⊗’ denotes the convolution operation, and H(x) is a binary
masking function that defines the shape of halftone dots. In our
implementation, we adopt the ordered dithering technique with
a halftone dot size of 4× 4 pixels. When considering a color
image, the halftoning process described in Eq. (1) operates
independently in each color channel.

2) A Surrogate Model for Halftone Distoriton: The noise
layer is vital in our method. Moreover, the end-to-end wa-
termarking framework requires a differentiable noise layer.
Chen et al. [5] propose a distortion model guided surrogate
model based on CycleGAN structure with two training stages
to generate distortions introduced by the recapturing process.
The trained surrogate model can be utilized to improve the
generalization performance of networks. What’s more, the sur-
rogate model consists of a series of differentiable operations,
which meets the requirement of the end-to-end watermarking
framework.

Therefore, inspired by [5], we utilize CycleGAN-based
surrogate models for generating halftone distortions, aiming
to improve the robustness of the watermark. We collect three
types of images for the surrogate model training, including
original images IO, simulated halftone images I ′H yield by
the process described in Sec. II-A1, and real halftone images
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Fig. 2. The surrogate model for halftone distortion. The black arrows indicate
the steps for two stages. The red dashed line represents the step only for the
first stage. The blue dashed line represents the step only for the second stage.

IH . The training process of the surrogate model is shown in
Fig. 2. In the first stage, IO and I ′H are employed to train
the surrogate model for the basic ability to generate halftone
distortions. In the second stage, real halftone images IH are
utilized to finetune the discriminator. In addition, IO and I ′H
are still participating in training to provide a reliable source
for learning halftone distortion.

B. Watermarking Framework

We adopt the end-to-end watermarking framework to realize
robust watermark against halftone distortion, which consists
of an encoder, noise layer, decoder, and discriminator. Specifi-
cally, we improve the noise layer by utilizing surrogate models
for halftone distortion. The generic watermarking framework is
shown in Fig. 3. The UNet-like encoder embeds the watermark
and maintains the quality of the watermarked image. The
encoder converted the concatenated watermark and original
image to a residual image, which is overlaid on the origi-
nal image to finish the watermark embedding. The decoder
consisting of convolution layers and fully connected layers
recovers the watermark from the distorted image by converting
the image to a vector with the same length as the original
watermark. The discriminator outputs a binary sequence to
judge whether the image is watermarked. Similar to generative
adversarial networks, adversarial training between the discrim-
inator and encoder can further improve the visual quality of the
watermarked image. The overall loss function of the generic
watermarking framework can be written as

L = λ1 · LI + λ2 · LW + λ3 · LD, (2)

where LI , LW , and LD denote the image reconstruction loss,
watermark loss, and discriminator loss. λ1, λ2, λ3 are the
weights for three loss components. Image reconstruction loss
can be MSE loss, LPIPS perceptual loss [6], etc, which are
utilized to improve the visual quality of the watermarked im-
age. Discriminator loss aims to distinguish the original image
and the watermarked image and usually adopts Wasserstein
loss [7], which is commonly utilized in generative adversarial
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Fig. 3. The framework of robust watermark against halftone distortion.
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Fig. 4. The visualization of each step of distortion layers.
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Fig. 5. Halftone images generated by surrogate models and collected in the
real environment.

networks. Watermark loss aims to minimize the difference
between the original watermark and the recovered watermark,
utilizing cross entropy loss.

The noise layer is the key to robust watermark against
halftone distortion. The noise layer in StegaStamp mainly
focuses on the distortion introduced by the shooting process,
while ignoring the halftone distortion in the printing pro-
cess. Our surrogate model focuses on generating the halftone
pattern during the printing process. Therefore, we combine
the halftone distortion surrogate model with the noise layer
proposed by StegaStamp. The visualization of each step of
distortion layers is shown in Fig. 4. The details of the noise
layer are shown as follows:

1) Perspective Warp: The unevenness of the paper during

the printing process and the deviation of the lens during
the shooting process can cause perspective deformation. To
simulate this distortion, a random perturbation is employed
to the corner locations of watermarked images (± 40 pixels),
and homographic transformation is adopted to map the water-
marked images to new locations.

2) Halftone Distortion: Two surrogate models are trained
to simulate inkjet and laserjet halftone distortion, respectively.
As shown in Fig. 5, surrogate models can generate halftone
distortions similar to real halftone images. To avoid the wa-
termark network overfit halftone distortion, both of them are
added to the noise layer and the probability is both set as
50%. The halftone distortion enables the encoder to adjust the
embedding area, intensity, etc automatically. At the same time,
it also improves the decoder’s ability to recover messages from
watermarked images with halftone distortions.

3) Motion and Defocus Blur: The shooting process can
introduce blur because of the camera motion and inaccurate
autofocus. A random angle between 0 and 2π and a straight
line blur kernel with a width between 3 and 7 pixels are
employed to simulate motion blur. In addition, a Gaussian blur
kernel with a standard deviation sampling between 1 and 3
pixels is adopted to simulate defocus blur.

4) Gaussian Noise: The electronic components in the camera
will introduce various noises during the imaging process. A
Gaussian noise with the standard deviation sampling in [0,
0.02] is employed to simulate the noise.

5) Color Manipulation: The camera uses white balance,
exposure settings, and chroma correction to adjust the output
image. These distortions can be approximated with random
color transformations, including hue shift, desaturation, and
brightness adjustment. the hue shift can be achieved by adding
a random color offset sampled uniformly from [-0.1, 0.1]
to each RGB channel. The desaturation can be achieved by
randomly linearly interpolating between the full RGB image



and its grayscale equivalent. The brightness adjustment can be
achieved by a linear transformation mx + b with m in [0.5,
1.5] and b in [-0.3, 0.3].

6) JPEG Compression: The images captured by the camera
are usually saved in the JPEG format. Since the rounding step
of JPEG compression is not differentiable at zero, the method
proposed by Shin et al [8] is employed to approximate the
quantization step near zero with a piecewise function. The
JPEG quality is sampled uniformly in [50, 100].

III. EXPERIMENTAL RESULTS

To train the surrogate model for halftone distortion, we
collect the training data with two printers and a scanner. We
choose an inkjet printer (Canon G3800) and a laser printer
(Canon iR-ADV C3530), which are two main types of printers.
Considering that the camera-shooting process may introduce
various factors, such as lighting and noise, we utilize a high-
quality scanner (CanoScan 5600F) to capture the halftone
distortion of the printed images minimizing the factors that
affect the halftone distortion capturing as possible. First, We
randomly select 300 images from the MIRFLICKR dataset
[9] and print them with the size of 5 × 5 cm2. Then, we scan
the printed images and crop them to 400 × 400 resolution.
Finally, we collect 15000 patches with halftone distortions for
the training of surrogate models.

To train the watermarking network against halftone distor-
tion, we randomly select 20,000 images from the MIRFLICKR
dataset [9] as the training dataset. The training images are
resampled to 400 × 400 resolution and are embedded with
200 bits random message. The implementation is based on
Tensorflow 1.13.1.

We evaluate the robustness performance of the proposed
method in the real-world environment. Firstly, 20 images not
included in the training set are randomly selected from the
MIRFLICKR dataset for watermark embedding. The length of
the watermark is 200 bits. Secondly, the watermarked images
are printed by inkjet and laserjet with the printing size of 2
× 2 cm2 on A4 standard paper. Thirdly, the printed images
are captured by mobile phones with the shooting distance
and angle of 10 cm and 0°, respectively. Finally, the decoder
recovers messages from captured images.

The bit error rate (BER) is employed to evaluate the robust-
ness of different methods. A lower bit error rate indicates better
robustness. Two SOTA print-camera resistant watermarking
methods, StegaStamp [2] and NSN [10], are used for compar-
ison. Our surrogate models are incorporated into these SOTA
methods. The details of our experimental configurations are
shown below.

StegaStamp: This approach proposes a set of differentiable
operations to simulate distortions in the print-camera scenario,
including perspective warp, motion and defocus blur, color
manipulation, noise, and JPEG compression.

NSN: This approach proposes a noise simulation network. In
the earlier training stage, the math model is utilized to simulate
distortions in the print-camera scenario. In the later training

stage, the math model is replaced with the noise simulation
network.

StegaStamp+S: Our noise layer consists of surrogate (S)
models for the halftone distortion and differentiable operations
proposed by StegaStamp, which generate printing distortion
and shooting distortion, respectively. The other configurations
(encoder, decoder, training loss, and hyperparameters) of Ste-
gaStamp+S are the same as those of StegaStamp.

NSN+S: In the later training stage, the noise simulation
network is replaced with our noise layer which contains
surrogate models for halftone distortion. The other configu-
rations (encoder, decoder, training loss, and hyperparameters)
of NSN+S are the same as those of NSN.

To validate the effectiveness of the proposed method, we
conduct a series of robustness experiments in different real-
world scenarios, including different devices, datasets, printing
sizes, and watermark capacities. Detailed experimental results
are shown as follows.

A. Visual Quality Evaluation

In this part, we evaluate the visual quality of watermarked
images after printing and shooting both quantitatively and
qualitatively.

The quantitative comparisons are shown in Tab. I. We
employ Peak Signal Noise Ratio (PSNR), Structural Similarity
(SSIM) [11], and Frechet Inception Distance (FID) [12] to
evaluate the visual quality of watermarked images. It can be
seen that watermarked images after the print-camera process
perform poorly in visual quality performance indicators. This
is because watermarked images undergo various distortions,
including halftone distortion, noise, blurring, etc. Moreover,
StegaStamp and NSN achieve slightly better performance than
StegaStamp+S and NSN+S in visual quality. This is because
the surrogate model generates obvious halftone distortion,
which leads to severe damage to the watermark. Therefore, the
encoder continuously adjusts the embedding area and intensity
to ensure correct watermark decoding after halftone distortion
while sacrificing some visual quality.

The qualitative comparisons are shown in Fig. 6. It can be
seen that watermarked images of StegaStamp+S and NSN+S
contain foggy traces visually. This is because the encoder
adjusts embedding strength and area of the watermark to
combat halftone distortion.

The watermarked images in practical scenarios are usually
printed in a small size. Moreover, they undergo various dis-
tortions after printing and shooting. The slight decrease in
visual quality after using the distortion surrogate model has
a relatively small impact and is within the acceptable range.
Therefore, we mainly focus on the robustness of the watermark
in practical scenarios.

B. Robustness Evaluation

1) Robustness to Different Printing and Shooting Devices:
In practical scenarios, watermarked images are commonly
captured by various printers and mobile phones with different
brands and imaging qualities. Therefore, it is essential to



TABLE I
THE VISUAL QUALITY OF DIFFERENT METHODS. THE BEST

PERFORMANCES ARE BOLD-FACED.

Methods Metrics
PSNR(dB) SSIM FID

StegaStamp 14.14 0.2435 262.26
NSN 14.20 0.2514 266.02

StegaStamp + S 14.05 0.2501 265.82
NSN + S 14.03 0.2554 276.80

(a) Original (b) StegaStamp (c) NSN   (d) StegaStamp+S (e) NSN+S 

Fig. 6. The visualization of watermarked images after printing and shooting.
Top: the images printed with inkjet; Bottom: the images printed with laserjet.

evaluate the robustness performance of watermarks across
different devices. In this part, the watermarked images are
printed by 4 printers, including inkjet (EPSON L805 and HP
OfficeJet 258) and laserjet (Konica Minolta C6500 and HP
LaserJet M176n). Then they are captured by 4 mobile phones
with different pixel resolutions (100 MP, 64 MP, and 13 MP).

Experimental results are shown in Tab. II. It can be seen
that the proposed method has achieved better robustness across
different devices. The average bit error rates of our method
are close to 10%. This indicates that the surrogate model ef-
fectively improves the robustness of the watermark to halftone
distortion, although different printers have different parameters
for the halftoning process.

2) Robustness to Different Datasets: In practical scenarios,
watermarks are commonly embedded in various types of
images. Identification photos and logos are two typical images
widely used in important documents and are usually the key to
verifying the authenticity of document images. For example,
Identification photos and logos are used to identify personal
and legal identities, respectively, and are high-risk areas for
tampering. Therefore, we evaluate the robustness performance
of watermarks across different datasets. We randomly select 20
images from the Identification Photo dataset [13] and Logo-
2k+ [14], respectively. In this part, ”EPSON L805” and ”HP
LaserJet M176n” are utilized for printing, and ”Oppo K9x” is
utilized for shooting.

Experimental results are shown in Tab. III. It can be ob-
served that the proposed method has achieved better perfor-
mance of each dataset with bit error rates dropping below
20%. This demonstrates the robustness of our method across
different datasets, even if the content of testing images is
significantly different from training images.

3) Robustness to Different Printing Sizes: In practical sce-
narios, watermarked images are commonly printed in different

TABLE II
BIT ERROR RATE (BER) WITH DIFFERENT PRINTING AND SHOOTING

DEVICES. THE BEST PERFORMANCES ARE BOLD-FACED.

Devices Methods Honor 50se Oppo K9x iQoo Z5 Meizu Metal

EPSON L805

StegaStamp 26.25% 27.42% 27.55% 28.12%
NSN 28.85% 28.55% 28.80% 29.77%

StegaStamp + S 11.15% 11.42% 11.67% 11.45%
NSN + S 11.07% 11.22% 11.20% 12.13%

HP OfficeJet 258

StegaStamp 22.60% 23.90% 22.87% 22.50%
NSN 25.20% 24.55% 25.43% 24.87%

StegaStamp + S 9.40% 9.05% 9.25% 9.77%
NSN + S 9.77% 10.28% 10.00% 11.07%

Konica Minolta C6500

StegaStamp 21.95% 23.05% 21.52% 22.00%
NSN 23.25% 22.30% 23.10% 22.82%

StegaStamp + S 10.05% 10.77% 10.50% 10.47%
NSN + S 11.42% 10.82% 11.30% 11.35%

HP LaserJet M176n

StegaStamp 25.80% 26.02% 26.80% 25.02%
NSN 25.35% 25.15% 24.90% 24.98%

StegaStamp + S 10.58% 11.10% 12.17% 11.27%
NSN + S 11.23% 11.55% 11.55% 11.20%

TABLE III
BIT ERROR RATE (BER) WITH DIFFERENT DATASETS. THE BEST

PERFORMANCES ARE BOLD-FACED.

Devices Methods Datasets
Photo Logo

EPSON L805

StegaStamp 26.12% 26.32%
NSN 28.78% 29.10%

StegaStamp + S 15.15% 18.07%
NSN + S 13.22% 16.20%

HP LaserJet M176n

StegaStamp 22.62% 22.77%
NSN 22.02% 22.32%

StegaStamp + S 13.92% 15.77%
NSN + S 11.52% 13.27%

sizes according to specific requirements. For example, there is
limited available space for embedding information on a per-
sonal business card, while multiple watermarked images need
to be included. Therefore, it is necessary to resize watermarked
images according to the importance of information or minimize
the size of watermarked images as much as possible. In this
part, we evaluate the robustness performance of our method
across different printing sizes. The watermarked images are
printed with 2 × 2 cm2, 1.5 × 1.5 cm2, and 1 × 1 cm2. ”EPSON
L805” and ”HP LaserJet M176n” are utilized for printing, and
”Oppo K9x” is utilized for shooting.

Experimental results are shown in Tab. IV. It can be seen
that the proposed method can improve the watermark robust-
ness across different printing sizes. Specifically, our method
can maintain bit error rates below 20% and 30% in printing
sizes of 1.5 × 1.5 cm2, and 1 × 1 cm2, respectively. This
indicates that the proposed method is suitable for the scenario
with small and multiple watermarks. Therefore, our method
enables a single image to accommodate watermarked images
with different sizes, which means more information can be
embedded.

4) Robustness to Different Watermark Capacities: In this
part, we evaluate the robustness performance of the proposed
method to different watermark capacities. We select the water-
mark capacities of 50 bits, 100 bits, 150 bits, and 200 bits for
retraining and testing the network. ”EPSON L805” and ”HP
LaserJet M176n” are utilized for printing, and ”Oppo K9x” is
utilized for shooting.

Experimental results are shown in Tab. V. It can be observed
that our method can achieve better performance across differ-



TABLE IV
BIT ERROR RATE (BER) WITH DIFFERENT PRINTING SIZES. THE BEST

PERFORMANCES ARE BOLD-FACED.

Devices Methods Printing size (cm2)
2 × 2 1.5 × 1.5 1 × 1

EPSON L805

StegaStamp 27.42% 36.35% 43.55%
NSN 28.55% 35.58% 42.40%

StegaStamp + S 11.42% 16.15% 27.65%
NSN + S 11.22% 15.57% 25.48%

HP LaserJet M176n

StegaStamp 26.02% 31.47% 40.10%
NSN 25.15% 31.31% 41.25%

StegaStamp + S 11.10% 14.95% 24.37%
NSN + S 11.55% 15.15% 22.85%

TABLE V
BIT ERROR RATE (BER) WITH DIFFERENT WATERMARK CAPACITIES. THE

BEST PERFORMANCES ARE BOLD-FACED.

Devices Methods Capacity (bits)
50 100 150 200

EPSON L805

StegaStamp 14.50% 20.30% 25.97% 27.42%
NSN 13.50% 20.85% 22.43% 28.60%

StegaStamp + S 4.30% 11.15% 11.20% 11.42%
NSN + S 2.90% 3.75% 4.57% 11.22%

HP LaserJet M176n

StegaStamp 12.90% 19.40% 23.43% 26.02%
NSN 11.50% 19.00% 20.97% 25.15%

StegaStamp + S 2.50% 8.80% 11.17% 11.10%
NSN + S 3.20% 3.85% 6.27% 11.55%

ent watermark capacities. Specifically, the proposed method
can decrease the bit error to below 5% when the watermark
capacity is 50 bits. Therefore, the watermark capacity of 50
bits can be selected when the watermark is required to be
completely recovered as possible.

IV. CONCLUSION

This work proposes robust watermark against halftone dis-
tortion, utilizing surrogate models and end-to-end watermark-
ing frameworks. The experimental results confirm that our
method can achieve good robustness performance under many
practical scenarios, including different devices, datasets, and
printing sizes.

In the future, we plan to extend our research to robust
watermark in the screen-camera scenario. By modeling dis-
tortions of the screen-camera process, especially the moiré
pattern, and training the corresponding surrogate model, we
may address the challenge of digital watermarking encountered
in the screen-camera scenario.
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