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Abstract— As the performance of machine vision continues 

to improve, it is being used in various industrial fields to 

analyze and generate massive amounts of video data. 

Although the demand for and consumption of video data by 

machines has increased significantly, video coding for 

machines needs to be improved. Spatial re-sampling plays a 

critical role in video coding for machines because it reduces 

the volume of the video data to be processed while 

maintaining the shape of the data’s features that are important 

for the machine to reference when processing the video. An 

effective method of determining the intensity of spatial re-

sampling as an efficient coding tool for machines is still in the 

early stages. Here, we propose a method of determining an 

optimal scale factor for spatial re-sampling by collecting and 

analyzing information on the number of objects and the ratio 

of the area occupied by the object within a picture.  

I. INTRODUCTION 

As deep-learning machine vision is now used widely in 

various industrial and research fields, the amount of video 

data being produced and distributed, not only by humans 

but also by machines, has been increasing rapidly. To 

manage these ever- growing volumes of data, many video 

codecs have been introduced, such as advanced video coding 

(AVC), high-efficiency video coding (HEVC), and versatile 

video coding (VVC) [1–2]. Research has also been 

progressing on perceptually optimized video coding. 

However, codecs based on human visual or sensory systems 

do not guarantee efficient compression of video data when 

used for deep-learning machine vision. There is therefore a 

need to study video coding that targets video data consumed 

by machines rather than humans [3-4]. An understanding of 

how machines interpret video data is needed to develop 

unprecedented coding technology for machines rather than 

for humans. However, a variety of machine vision systems 

have been designed, and how video data are under- stood 

differs among these system. It is essential to maintain as 

much as possible the contours and other common features 

that machines collect to interpret video while increasing 

compression efficiency. Spatial re-sampling can easily 

reduce the volume of video data while significantly 

maintaining the position or arrangement of objects and 

boundaries, which are common features in video data. In 

this paper, we apply a new spatial re-sampling method 

to each picture in the input video to maximize compression 

efficiency while maximizing retention of the common 

features that the machines need to interpret the video data. 

In the proposed method, the ratio of the area occupied by 

a detected object in a picture is calculated, and the optimal 

scale factor for spatial re-sampling for each picture is 

determined using an object occupancy distribution (OOD), 

which is generated based on the size and number of 

detected objects. Figure 1 is a flowchart for determining 

the optimal scale factor for spatial re-sampling based on 

the proposed OOD. 

Fig. 1   Architecture of the proposed method for determining the 

optimal scale factor for spatial re-sampling based on OOD. 

 

II. OOD FOR SPATIAL RE-SAMPLING 

We used the test video sequences in the SFU-HW 

dataset, and explored the appropriate scale factors for 

spatial re-sampling for each video sequence through video 

data analysis and OOD generation.  

 

A. Analysis of the impact of spatial re-sampling on machine 

vision Performance 

Object detection was performed on the spatially up-

sampled sequences at the same resolution as the original, 

and the performance results of the object detection accuracy 

(mAP) are organized by class and plotted in Figure 2. In 

Figure 2, several important phenomena are apparent. First, 

the scale factor for the spatial re-sampling increases as 

the object detection accuracy decreases because the 

boundaries of the image become increasingly blurred as 

the intensity of the spatial re-sampling strengthens. 
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Second, the machine accuracy drops significantly in a specific 

degree of re-sampling intensity depending on the class of the 

sequences, which are classified according to the resolution size. 

Fig. 2   Variation in object detection accuracy depending on scale 

factors for spatial re-sampling. 

  

B. OOD generation to determine an optimal re-sampling 

threshold 

In the analysis of Section A, the stronger the spatial re-

sampling, the weaker the machine vision performance, 

and the object detection accuracy varies depending on the 

video resolution and the size and number of detected 

objects. The OOD is generated based on the detected object 

information including the size of detected objects within a 

single frame. The bounding box size of each detected object 

is divided by the original resolution size to obtain the 

object occupancy ratio (OOR). A histogram is then created 

depending on the OOR distribution. In simple terms, the 

OOR is the ratio of the detected object’s size to the original 

resolution size, and the OOD is a histogram representing the 

distribution of the OOR. Figure 3 shows the experiment 

results related to OOD generation obtained by performing 

spatial down- sampling and object detection at increments 

of 10% from 10% to 100% of the original resolution for the 

84th frame of the BasketballDrive sequence. Figure 3(a) 

depicts the results of object detection with bounding boxes 

for the spatial down-sampled pictures at various scales. 

Figure 3(b) depicts the generated OOD based on the 

detection results for each spatial down-sampled picture. It 

includes a histogram of object counts corresponding to 

various OOR ranges. Figure 3(c) is a graph expressing the 

kernel density estimation of Figure 3(b). Through Figure 

3(c), the optimal re-sampling threshold can be explored 

visually. Figure 3(b) makes it clear that the distribution 

behaviors for the scale factors ranging from 50% to 100% 

are similar to each other. However, the distribution 

behaviors for scale factors below 50% are substantially 

different from those for the scale factors beyond 50%. We 

can therefore conclude that the optimal re-sampling 

threshold is 50%. Up to this threshold, we can keep the 

original OOD characteristics of the original picture with 

100% resolution. 

Fig. 3   Experiment results related to OOD generation for the 84th 

frame of the Bas- ketballDrive sequence: (a) Object detection 

results with bounding boxes for spatially down-sampled pictures 

with scale factors of 100%, 70%, 50%, and 30%, respectively, (b) 

Generated OODs and (c) Kernel density of the OOD. 

 

III. DETERMINATION OF THE OPTIMAL SCALE FACTOR 

Figure 4 is a flowchart of the process for determining the 

optimal scale factor for spatial re-sampling for each picture. 

The proposed process consists of four steps. First, the object 

detection network model generates object information, such 

as the bounding box size of detected object and the OOR for 

the original and spatial down- sampled pictures. Then, the 

OODs shown in Figure 4(b) are generated for all the 

candidate scale factors by using the object information. The 

next step is to analyze the correlation among the generated 

OODs to explore the similarity of the spatial down- sampled 

pictures to the original picture in terms of object detection 

performance. For analysis of similarity, we compared the 

correlation between the original picture with 100% 

resolution and the down-sampled picture with a scale 

factor x, where x is an element of the scale factor list SL 

which is {10%, 20%, 30%, . . . , 90%}. In this paper, the 

correlation was obtained using the OOD, which is the 

histogram representing the distribution of OOR. 
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Fig. 4   Flowchart for determining the optimal scale factor for 

spatial re-sampling.  

 

If the correlation exceeds the threshold value of γ = 0.9, 

the down-sampled picture is sufficiently similar to the 

original picture in terms of object detection. By gathering 

all the scale factors satisfying the threshold condition, we 

constitute the Correlated Scale- factor List (CSL). The CSL 

is a list of scale factors expected to have no significant 

difference in machine vision performance compared with 

the original picture. Among the CSL elements, the 

minimum scale factor is selected to be the optimal scale 

factor for re-sampling. If no element exists in the CSL, no 

definite optimal scale factor can be selected. In this case, 

the object detection performance even for the original 

picture with 100% resolution was found to be low. We 

applied the strongest spatial re-sampling ratio to achieve 

the utmost compression efficiency at the cost of slight 

machine performance loss. 

Figure 5 is a conceptual diagram of an exemplary process 

for determining the opti- mal scale factor for spatial re-

sampling among the candidate scale factors of 80%, 60%, 

40%, and 20%. Because the OOD of the original picture and 

the OODs of the down-scaled pictures with 80% and 60% 

scale factors are estimated to be similar to each other, the 

scale factors of 80% and 60% are considered to be the 

candidates for an optimal scale factor for spatial re-sampling. 

Given the achievable compression efficiency, a scale factor 

of 60% corresponding to the lowest scale factor of the 

candidates was the optimal scale factor. 

 

Fig. 5   Conceptual diagram of the proposed method for 

determining the optimal scale factor for frame-level spatial re-

sampling.  

 

IV. EXPERIMENTAL RESULTS 

This section describes the experimental verification of 

how much video data can be reduced and how much 

machine performance can be maintained by applying the 

proposed method. The experiment began by applying a re-

sampling operation with a scale factor of {10%, 20%, 

30%, . . . , 90%} to the original picture, after which object 

detection was performed using Faster-RCNN X101-FPN 

model. The proposed method determined the optimal scale 

factor for each picture. The machine accuracy error, ε, 

and the video data reduction ratio, C, were used to evaluate 

the performance of the proposed method. The machine 

accuracy error ε means the performance decrease in the 

object detection that occurs when the proposed spatial re-

sampling with an optimal scale factor is applied compared 

with the object detection accuracy achieved for the original 

picture with 100% resolution (Equation 1). In this equation, 

Accuracyo represents the object detection accuracy for the 

original picture and Accuracyp is the object detection 

accuracy obtained for the down-sampled picture by the 

proposed method. The machine accuracy error ratio Er is 

defined as the ratio between ε and Accuracyo as shown in 

Equation 2. C and Cr represent the data reduction ratio 

and rate, respectively, where C is the ratio of the original 

video data rate to the down-sampled video data rate, and Cr 

is the corresponding reduction rate expressed as a 

percentage. These are defined in Equations 3 and 4. From 

Equation 1 to 4 , the subscript o and p indicate the original 

picture and the down-sampled picture obtained by the 

proposed method, respectively 
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The data reduction–to–accuracy error ratio (DRAER) in 

Equation 5 is used to evaluate the achieved reduction in the 

video data volume against the obtained Er. 
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where the Er excludes the case of value 0 indicating no 

change in the resolution of the video data after applying 

the proposed method, that cannot happen in practice. 

Table I is the number of video frames classified to each 

scale factor for spatial down- sampling. The behavior of the 

classification depends highly on the characteristics of the 

video frames in terms of the size and the number of 

objects detected. 

 
Table I. Number of video frames classified to each scale 

factor for spatial down- sampling. 

 

Table II describes the experimental results obtained 

using the proposed method for the SFU-HW dataset. It 

compares the mAP for the original video with 100% 

resolution and the mAP for the down-sampled video by 

the proposed method, and shows the value of Er, as well 

as C. In most cases, the Er related to the ability to keep the 

object detection accuracy is less than 10%, which is a 

satisfactory performance. Only the Traffic and 

BQTerrace sequences have Er values exceeding 10% 

(16.97% and 37.44%, respectively). Except for a few 

sequences, the Er is stays within 10%, indicating that the 

machine vision performance can be stable for most test 

sequences. As for the exceptional cases in which the Traffic 

and BQTerrace sequences were used for the test, most of the 

video frames are classified into the 10% scale factor. 

 

 

Table II. Experimental results of the proposed method for 

the SFU-HW dataset. 

 

V. CONCLUSIONS 

In this paper, we devised an OOD to determine the 

optimal scale factor for spatial re-sampling to optimize 

video compression efficiency for machines. The OOD was 

created by applying the area information occupied by the 

detected object in the picture. By analyzing the similarity of 

OODs for various candidate scale factors between the down-

sampled and the original pictures, we were able to obtain the 

optimal scale factor for the frame-level re-sampling.  

 

VI. ACKNOWLEDGMENT 

This work was supported by the Institute of Information and 

Communications Technology Planning & Evaluation (IITP) 

under grant number (2020-0-00011) and the Basic Science 

Research Program through the National Research Foundation 

of Korea under grant number (NRF-2021R1F1A1048404). 

REFERENCES 

[1] ISO/IEC: Information technology–coding of audio-visual 

objects–part 10: Advanced video coding. ISO/IEC 14496-10 

(2022). 

[2] ISO/IEC: Information technology–coded representation of 

immersive media–part 3: Versatile video coding. ISO/IEC 

23090-3 (2022). 
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Sequence Number of video frames per each scale 
factor 

Class name 100 90 80 70 60 50 40 30 20 10 

A Traffic 0 0 0 0 0 1 1 0 3 28 
B ParkScene 1 4 2 4 2 4 5 4 3 4 
B Cactus 13 11 1 5 8 0 0 4 10 45 
B BasketballDriv

e 
8 13 3 5 11 9 11 22 15 0 

B BQTerrace 0 0 0 0 0 0 0 0 27 102 
C RaceHorsesC 62 12 11 6 2 2 1 1 0 0 
C BQMall 62 23 14 12 8 5 3 2 0 0 
C PartyScene 27 19 14 7 4 7 8 8 3 0 
C BasketballDrill 20 12 7 5 4 5 3 5 4 0 
D RaceHorsesD 40 19 12 8 4 4 5 4 1 0 
D BQSquare 21 31 9 11 5 11 39 2 0 0 
D BlowingBubble

s 
28 24 21 10 8 5 0 0 1 0 

D BasketballPass 19 10 6 7 6 7 6 4 0 0 

Sequence 

Name 

Orig. 

(mAP) 

Prop. 

(mAP) 

 

Er 
C 

  

Cr 
DRAER 

(dB) 

Traffic 42.13 34.98 16.97% 7.67 86.96% 16.55 
ParkScene 54.07 49.14 9.11% 2.01 50.29% 13.44 

Cactus 70.22 68.98 1.77% 2.44 59.07% 21.40 
Basketball

Drive 
42.04 40.95 2.58% 1.91 47.71% 18.70 

BQTerrace 40.04 25.05 37.44% 8.27 87.90% 13.44 
RaceHorse

sC 
25.43 24.41 4.00% 1.09 8.60% 14.37 

BQMall 43.02 41.39 3.80% 1.16 13.66% 14.84 
PartyScene 67.05 65.67 2.06% 1.34 25.33% 18.13 
Basketball

Drill 
48.22 49.77 3.23% 1.35 25.73% 16.20 

RaceHorse
sD 

29.79 28.50 4.32% 1.21 17.30% 14.47 

BQSquare 34.85 31.59 9.35% 1.46 31.42% 11.93 
BlowingBu

bbles 
58.73 59.72 1.69% 1.20 16.42% 18.50 

Basketball
Pass 

46.51 44.93 3.40% 1.34 25.61% 15.97 


