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Abstract—Multi-modal video summarization task provides a
text summary by combining information from different inputs.
Previous methods usually generate the summary from video and
ground truth text inputs, but seldom study how audio, video,
and ASR text influence the results. This work introduces a
novel multi-modal video summarization approach that leverages
video and audio inputs, along with speech-recognized text. Our
method initiates by conducting speech recognition using a whisper
ASR model, followed by representation of visual, textual, and
audio information using video transformer, BART, and whisper,
respectively. Subsequently, two-stage fusion between different
modalities is applied. The fused features are fed into a BART
decoder to generate text summaries. Experiments on the how2
dataset show that our method outperforms previous baselines.
It is also revealed that incorporating audio information helps
generate a better summary even if the texts contain certain errors.

I. INTRODUCTION

E-learning has become a crucial way for people to acquire

knowledge. With numerous educational videos being created

and shared online every day, knowing their main contents

and recommending videos based on the audience’s interest

become necessary. To address this issue, video summarization

tasks have been proposed to retrieve essential information and

generate a short and readable text summary [1]–[3].

In recent years, large-scale generative pre-trained language

models [4]–[6] based on Transformers [7] have been pro-

posed and applied in video summarization tasks, both in

single modality and in multiple modalities. In single modality

approaches, Sharma et al. [8], [9] utilizes audio input to

transcribe speech into text and generate the summary. For

multiple modalities, Yu et al. [3], Xu et al. [10], Qiao et al.

[11], and Yuan et al. [12] leverage both visual and language

features, employing information fusion techniques to produce

summary texts.

Automatic speech recognition (ASR) techniques have made

significant advancements by developing larger and more robust

models [13]–[16] and making use of multi-modal information

[17]–[21]. Moreover, ASR-oriented feature representation has

been adopted in summarization [8], speech translation [22],

emotion recognition [23] etc., showing its potential to pro-

vide necessary information for various applications. However,
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Fig. 1. The concept of the proposed video summarization method. Our
method takes video and audio as inputs. We carry speech recognition and
present two-stage fusion of visual, audio, and text to obtain text summaries.

previous multi-modal summarization tasks tend to focus on

video and ground truth text information, few researchers study

how audio, video, and ASR text information jointly influence

the quality of generated summary texts. Unfortunately, online

videos usually do not contain subtitle texts. Since textual

information is highly beneficial for video summarization [8],

it is necessary to carry ASR to obtain audio transcripts and

provide richer information beyond just audio and video inputs.

In this work, we present a novel method that produces text

summaries based on video and audio inputs, which is shown

in Fig. 1. In this method, text is first generated by a whisper

ASR model. Then, video transformer [7], BART [4] and frozen

whisper [14] are used to extract features from visual, text,

and audio modalities respectively. Two methods based on two-

stage fusion are introduced to combine information from three

different modalities (i.e. visual, text, and audio) together. A

BART decoder is finally adopted to obtain the text summaries.

We conduct experiments on the how2 dataset [24] to evaluate

our method. The results show that our method outperforms

previous baselines. We perform further experiments and prove
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Fig. 2. The workflow of the proposed video summarization method. We propose two kinds of two-stage fusion methods, named DMHA fusion and MIR-MHA
fusion, to combine information from different input modalities and generate the summary.

that audio input helps generate a better summary even if the

input texts have certain errors.

II. PROPOSED METHOD

The workflow of our proposed method is shown in Fig. 2.

This method takes video frames and audio waveforms as

inputs and produces text summaries as the output. For the

given video frames and audio waveform inputs, visual features,

audio spectrograms, and ASR texts are first extracted from the

corresponding input modalities. Then, video transformer [7],

BART [4] and frozen whisper [14] are used to represent visual,

text, and audio information respectively. Next, two-stage fusion

strategies are introduced to combine information from video,

audio, and text modalities together. The fused features are

conveyed into a BART decoder to obtain the text summary. The

detailed method will be introduced in the rest of this section.

A. Video and Audio Inputs

For video features, we follow previous work [2], [24] to

retrieve 2048D representation by a 3D ResNeXt-101 model

[25] pre-trained on the Kinetics dataset [26]. We further pro-

cess this 2048D feature with a visual transformer [7] encoder,

incorporating positional embeddings. The output from this

process serves as our visual input.

For audio information, we follow previous work [24] to

retrieve audio spectrogram from audio waveforms using Kaldi

[27]. We extract 40D filter bank features from raw speech.

Then, we obtain the audio feature representation using pre-

trained whisper [14]. We set up a multi-layer convolution

network to convert the input filter bank feature to 80D to fit

the whisper inputs. We freeze the encoder and obtain the last

hidden state from its output as the audio features.

B. ASR Text
Literature [8] has demonstrated that the text summary can

be generated by fine-tuning an ASR model, which suggests

that leveraging ASR texts contributes to the generation of text

summaries. Motivated by this finding, we employ a whisper

model [14] to generate ASR texts. We freeze the parameters in

its encoder and decoder and just let whisper recognize speech

and generate the corresponding text. Then, we use a BART

encoder [4] to encode the generated texts.

C. Information Fusion
Information fusion at a deeper layer of the encoder tends

to improve the quality of text summary [3]. Hence, we

conduct two-stage fusion in the last layer of the encoder

to combine information in video, audio, and text modalities

together. We take ASR text as the main input flow to ensure

the length is the same as that of the text. We employ two

kinds of fusion methods called Dual Multi-Head-Attention

(DMHA) fusion and Modality-Invariant-Representation Multi-

Head-Attention (MIR-MHA) fusion respectively to combine

the input information.
DMHA Fusion Yu et al [3] uses multi-head-attention to fuse

text and visual information. We wonder how such a structure

performs when audio information is also involved. Hence,

we present DMHA fusion, which contains two multi-head-

attention fusion. The fusion first carries A-T fusion which fuses

audio and text information. Then it carries V-AT fusion which

fuses the results of A-T fusion and the video information.
In A-T fusion, we use the last hidden state of BART encoder

Zt as the query and use the audio feature Za as both key and

value. Linear projections WQ, WK and WV are made to obtain

QAT , KAT and VAT , respectively.

QAT = ZtWQ (1)
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TABLE I
EXPERIMENTAL RESULTS OF OUR METHOD AND OTHER METHODS, WHERE GT MEANS USING GROUND TRUTH TEXTS, ASR MEANS USING

SPEECH-RECOGNIZED TEXTS.

Method Input Fusion Rouge-1 Rouge-2 Rouge-LModality Text Punctuation Method Order
End-to-End [9] A – – – – 60.9% 43.0% 55.9%

BASS [9] A – – – – 64.0% 49.0% 60.1%
MCR [12] V+T GT GT MHA (in parallel) 61.7% 45.2% 59.0%

VG-VPLM*[3]
V+T GT GT MHA V-T 65.3% 49.3% 60.4%
V+T ASR Fullstop MHA V-T 63.8% 47.2% 59.1%
V+T ASR – MHA V-T 55.6% 36.7% 49.7%

Ours

V+A+T GT GT DMHA A-T+V-AT 64.7% 48.6% 59.5%
V+A+T ASR Fullstop DMHA A-T+V-AT 66.0% 50.0% 61.3%
V+A+T ASR Fullstop DMHA V-T+A-VT 64.9% 48.9% 60.8%
V+A+T ASR – DMHA A-T+V-AT 59.6% 41.2% 53.7%
V+A+T GT GT MIR-MHA A-V+AV-T 64.8% 48.7% 59.9%
V+A+T ASR Fullstop MIR-MHA A-V+AV-T 66.4% 50.2% 61.6%
V+A+T ASR – MIR-MHA A-V+AV-T 58.8% 40.4% 53.1%

*Based on our experiments.

KAT = ZaWK (2)

VAT = ZaWV (3)

We then set up cross-modal multi-head attention (CMA) to get

the audio features RAT based on the text query.

RAT = CMA(QAT ,KAT , VAT ) (4)

To remove redundant information and noise, we use a forget

gate on RAT by setting up a forget gate mask M and doing

element-wise multiplication (shown with ⊗) with RAT to

output the updated R′
AT :

M = sigmoid(Concatenate(RAT , Zt)Wm) (5)

R′
AT = M ⊗RAT (6)

We concatenate Zt and R′
AT , and linearly project it to specific

dimensions with WAT to obtain Z ′
at.

Z ′
at = Concatenate(Zt, R

′
AT )WAT (7)

We then obtain Zat by adding Z ′
at and Zt.

Zat = Z ′
at + Zt (8)

We do a similar step for V-AT fusion. We use Zat to obtain

QATV , and visual feature Zv to obtain KATV and VATV

respectively.

MIR-MHA Fusion Modality-Invariant Representation

(MIR) [19], [23] captures the shared information in different

modalities to ease the fusion process. In this work, we intro-

duce MIR-MHA fusion based on MIR fusion. Our MIR-MHA

fusion first carries A-V fusion for audio and video information

using the MIR technique and then carries AV-T fusion to fuse

the results of A-V fusion and the text information.

In A-V fusion, we first linearly project the audio feature Za

and visual feature Zv into the same dimension with Wa and

Wv to obtain Z ′
a and Z ′

v , respectively.

Z ′
a = ZaWa (9)

Z ′
v = ZvWv (10)

We vertically concatenate Z ′
a and Z ′

v to obtain the shared

information Z ′
av .

Z ′
av = Concatenate(Z ′

a;Z
′
v) (11)

Then, we convey Z ′
a, Z ′

v and Z ′
av into the MIR-generator,

where a hybrid-modal attention (HMA) is set up to extract

information in each modality-specific representations.

sm = HMA(Z ′
m, Z ′

av),m ∈ {a, v} (12)

where the details of the HMA module will be described later.
Next, the resulted sm (m ∈ {a,v}) features are added to

input sequence Z ′
av to obtain modality-invariant representation

Zinv
av . 1×1 convolution with PReLU activation [28] and layer

normalization [29] are used here.

Zinv
av = Norm(Z ′

av +
∑

m∈{v,a}
conv(sm)) (13)

Finally, the modality-specific information and representations

are concatenated to get the representations of MIR fusion Zav .

Zav = Concatenate(sv, sa, Z
inv
av ) (14)

Where sm contains information from both audio and visual

modalities.
The HMA module in the MIR generator extracts represen-

tation for input audio and video features respectively using

multi-head-attention. Here, Z ′
av is used as query, audio (video)

feature Z ′
a (Z ′

v) is used as both key and values.

RAV = CMA(Z ′
av, Z

′
m, Z ′

m),m ∈ {a, v} (15)

A parallel convolutional network is then used to learn the mask

for the modality-specific information.

sm = RAV ⊗ σ(conv(Concatenate(Z ′
m, Z ′

av))),m ∈ {a, v}
(16)

Where ⊗ means element-wise multiplication.
To fuse Zav with text information on AV-T fusion, we set

up another multi-head-attention fusion. We use the last hidden

state of the original BART encoder Zt as the query and use

Zav as both key and value. This multi-head-attention is similar

to the one proposed in DMHA fusion.
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D. Decoding and Generation
We use a BART decoder to decode the sequence. The

features obtained by two-stage fusion are fed into the decoder,

which generates potential hypotheses and their corresponding

probabilities through beam search. The decoding proceeds

in a left-to-right direction until the decoded token reaches

an <end> mark or the maximum length of the generated

summary. Finally, the hypothesis with the highest probability

is chosen as the definitive summary.

III. EXPERIMENTAL EVALUATIONS

A. Method Implementation
Dataset We conducted our experiments using the how2

dataset [24], which comprises 72,980 instructional videos

spanning a total duration of 2,000 hours. This dataset provides

video, audio, and text information. The audio information

includes the sentence-level filter bank and the video-level filter

bank, while the text information contains video transcripts and

short text summaries. The audio filter bank in the dataset is

derived from 16 kHz raw speech with a 25 ms time window

and a 10 ms frame shift using Kaldi [27]. The videos in the

dataset have a wide range of domains, with 68,333 for training,

2,520 for validation, and 2,127 for test. The corresponding

sentence-level filter bank features are 1,013,715, distributed as

950,026 for training, 34,687 for validation, and 29,002 for test.
ASR Text Generation We used original filter bank features

in the training set to generate ASR text. Since the input of

whisper needs to be an 80D audio spectrogram, we establish

a multi-layer convolution network preceding the pre-trained

whisper model. We padded the filter bank features to fit the

3000 frame whisper input and trained the convolution layer

before the whisper encoder, with the filter bank extracted from

the top 2.5% (approximately 23,000) sentences. Subsequently,

we employed this trained model to generate ASR text for

the entire sentence-level dataset. To acquire ASR text at the

video level, we concatenated the sentence-level ASR texts

corresponding to each video.
Data Preprocessing We set the max length to 256 for

video features, and 512 for text. The video/text sequences were

padded or truncated to the corresponding max length before

being conveyed into the model.
For audio features, video-level filter banks usually contain

6000-9000 frames [8], exceeding the capacity of the whisper

input (3000 frames). To address this, we utilized whisper to

generate audio features for every 3000 frames from the video-

level filter bank. These generated frames were concatenated

and down-sampled every 3 frames to fit the 3000-frame input

of the whisper encoder.
Hyper Parameters We generated ASR text using pre-

trained whisper-tiny.en model1 with 4 layers in both

encoder and decoder. We also generated the audio feature

from the last hidden state of the encoder. We modeled the text

feature using pre-trained bart-base model2 with 6 layers in

1https://huggingface.co/openai/whisper-tiny.en
2https://huggingface.co/facebook/bart-base

both encoder and decoder. Both models are not case-sensitive.

For the video transformer, we used a 4-layer encoder with 8

attention heads and 2048 feed-forward dimensions. We set the

max length of our generated summary to 64, the batch size to

8, and the learning rate to 3e-4. Adam optimizer [30] was used

during optimization. The model was trained for 60 epochs.

Hardware and Software We performed our experiments on

a computer with Intel Xeon Gold 6142 CPU, 128GB RAM, 3T

HDD, and Nvidia Titan GPU. Our program was made using

Python 3.9 and Pytorch 1.13.1 on Ubuntu 20.02.

B. Results and Analysis

We take End-to-End [8] and BASS [9] which use audio input

only, VG-GPLM [3] and MCR [12] which use both video and

ground truth text as our baseline. We adopt Rouge-1, Rouge-2,

and Rouge-L [31] to evaluate the summarization results. We

use a pre-trained fullstop model [32] to give punctuation to

ASR text. We also test our method under the ground truth text

with ground truth punctuation. Our results are in table I. Note

that since whisper is not designed to be fine-tuned, we did not

conduct experiments for video and audio inputs.

From the results, when we use V+A+T features with ASR

text, our method has a better performance compared with VG-

GPLM [3] that uses V+T features with ASR text, and End-

to-End method [8]. Notably, our approach even outperforms

models using ground truth text and punctuation. This means

that information from different modalities (for V+T, it is A;

for A, it is V+T) helps a lot to generate the summary.

We further compare results with and without punctuation,

revealing better quality of the summary texts when punctuation

is included. This is also reasonable since punctuation plays

a crucial role in sentence segmentation and helps eliminate

ambiguity in the input text.

IV. DISCUSSION

Fusion Order From table I, we find that when we use

DMHA fusion, the proposed method, which first fuses A-

T features and then fuses V-AT features, generates a better

text summary than the one that first fuses V-T features and

then fuses A-VT features. The reason is considered as that,

audio and text share similar information which will strengthen

the representation of the fused feature when faced with video

information. We also find that using MIR fusion with punctu-

ation slightly improves the rouge score in summarization. This

means that MIR gives a stronger feature representation when

fusing video and text information.

The Contribution of Errors in Transcripts We find that

our approach outperforms the model using ground truth text

and punctuation. We wonder why this happens and conduct

a deeper investigation on this problem using our model with

DMHA fusion and VG-GPLM [3] model.

The first finding is that there is a space before each punc-

tuation in the ground truth text, making the encoding of the

same punctuation different between ground truth and ASR text.

We remove space to form a GT-Fixed set and run experiments

again. The results are in the middle of table II.
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TABLE II
EXPERIMENTAL RESULTS OF OUR METHOD USING DIFFERENT KINDS OF

TEXT, WHERE ASR MEANS USING SPEECH-RECOGNIZED TEXTS, GT
MEANS USING GROUND TRUTH TEXTS, GT-FIXED MEANS USING GROUND

TRUTH TEXTS WITH FIXED PUNCTUATION, REMOVE SHORT AND ADD

EXTRA MEANS THE SIMULATION OF ASR SHORT DELETION AND

INSERTION ERRORS RESPECTIVELY.

Text Method Rouge-1 Rouge-2 Rouge-L

ASR Text
Ours 66.0% 50.0% 61.3%

VG-GPLM 63.8% 47.2% 59.1%

GT
Ours 64.7% 48.6% 59.5%

VG-GPLM 65.3% 49.3% 60.4%

GT-Fixed
Ours 66.2% 50.2% 61.4%

VG-GPLM 66.1% 50.1% 61.3%

Remove Short
Ours 66.1% 50.3% 61.7%

VG-GPLM 66.0% 50.4% 61.6%

Add Extra
Ours 65.4% 49.4% 60.6%

VG-GPLM 64.5% 48.5% 59.5%

We also wonder how ASR errors affect the results. We

compare the ASR transcripts and ground truth transcripts and

simulate ASR short deletion and insertion errors. Here, we

define short deletion as no more than 10 tokens between ASR

text and ground truth text in each transcript and we insert all

the extra tokens, i.e., all ASR insertion errors to the ground

truth text for the insertion error. We use fullstop model

to rewrite the punctuation based on such simulations while

keeping other transcripts the same as is. We show these results

in the latter part in table II.

From the results, when we run the experiments on the GT-

Fixed set, our model has comparable results with the one using

ASR text. This means punctuation has a crucial influence when

connecting audio and text information.

We find that when we use Remove Short text, the rouge score

has no obvious difference between our method and VG-GPLM

method. This means using audio or not has little influence on

the quality of the generated summary.

We also find that when we use ASR text and Add Extra
texts, the rouge score using our method is better than using

VG-GPLM method. This means that the audio signal in such

summarization task helps resist some errors caused by input

audio in the texts and complements the information that

cannot be captured in texts. This further implies that such

summarization tasks can be finished with their original audio

and video information.

Prediction Example We give an example of generating the

summary using our method with MIR-MHA fusion and VG-

GPLM [3] respectively in Fig. 3, where both methods use ASR

texts. The texts in red are the matched texts between the ground

truth summary and the summary generated from both methods.

Note that we omitted some ASR texts in the figure.

From the example, our method using V+A+T input has

more matched words compared with the one using V+T input.

To analyze in detail, the proposed method correctly generates

the word expert and planting, but fails to generate

the word spring. The proposed method also continuously

generates the words get professional advice from
an expert on corresponding to the ground truth, while the

Video Frames

ASR Text

back to the seedling tomato plants for spring planting in the garden. 
the time that it takes for the seed to germinate are going to be largely 
determined by the average temperature of the pot …… you've got a 
tomato plant that is already established root and just needs to be kept 
with a certain. generally speaking, you can tell that by looking.

GT Summary
how to care for tomato seedlings for spring planting; get professional
tips and advice from an expert on growing your own fruits and 
vegetables in this free gardening video.

(Proposed) V+A+T Summary caring for tomato seedlings? get professional advice from an expert 
on tomato planting and caring in this free video.

V+T Summary looking for tomato seedlings? get advice from a professional on
spring tomato caring in this free video.

Fig. 3. An example showing the generated summary with ASR text using our
method with MIR-MHA fusion and VG-GPLM. Texts in red are the matched
texts between the ground truth and the summary generated from both methods.

method using V+T input generates get advice from a
professional on. This means audio also provides effec-

tive information for a better summary.

V. CONCLUSION AND OUTLOOK

In this work, we proposed a new method that generates text

summaries based on video and audio inputs. We used whisper

to generate text from the input audio. Then, we employed

the video transformer, BART, and frozen whisper to represent

input information. We designed two kinds of two-stage fusion

methods to combine information from different modalities

and adopted a BART decoder to obtain the final summary

texts. Experiments showed that our method outperforms the

previous baselines. Further experiments proved that audio

information helps generate a better summary even if the texts

contain errors. Next, we want to apply a general-purpose

sound feature extractor for audio modality instead of ASR.

We are also interested in generating key video frames to make

our summary contain both graphics and text.
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