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Abstract—Acoustic echo cancellation (AEC) aims to eliminate
echoes from near-end microphone signals and recover the near-
end speech at the same time. In this work, we propose a Diverse
Time Frequency Attention Neural Network (DTFAN) for AEC
that operates in a full network-based manner. To that end, we
first utilize a network aiming at aligning the features of the far-
end reference signal and the near-end microphone signal. After
that, the diverse time-frequency attentions capturing the intrinsic
connections of the features in the time and frequency domains
are developed. Since the alignment of the reference signal is
conducted by the network, the requirement of traditionally pre-
processing the far-end signal is avoided, and the whole network
is end-to-end. The experimental results show that the proposed
framework performs well and robustly on the synthetic test set
and the blind test dataset compared to other recent approaches,
especially in double-talk scenarios.

I. INTRODUCTION

In a full-duplex voice communication system, the far-end
user will receive a modified version of his/her speech due to the
acoustic coupling that occurs between the near-end microphone
and the near-end speaker. Acoustic Echo Cancellation (AEC)
systems are designed to eliminate echoes from the microphone
signal while minimizing distortion of the near-end speaker’s
voice [1], [2].

In addition to traditional methods [1], [2], recently, there
have been many successes in deep learning-based AEC studies
due to the great potential demonstrated by deep learning
in modeling complex nonlinear problems. In [3], frequency-
domain adaptive filters [4] is first used to remove linear echoes,
then a complex GCCRN network is utilized to eliminate
residual echoes and background noise. It seems that a use
of traditional filter on top of network is cumbersome. Some
studies that only utilize neural networks for the entire process
have also achieved good performance. For example, DTLN
[5] uses LSTM [6] networks to learn speech features. F-T-
LSTM [7] employs a complex encoder-decoder structure, and
after extracting the signal features, F-LSTM and T-LSTM
are used for time-frequency domain modeling separately, and
the final estimation yields the near-end microphone signal. In
DeepVQE [8], the alignment module is designed to estimate
the time delay of the far-end reference signal and the near-end
microphone as a way to align the features of the two signals.
Additionally, the Complex convolving mask block (CCM)
module is also used for the final output of the estimated speech,

and using three-vector components instead of the conventional
two-vector components (real and imaginary) provides more
stable output results and prevents low noise and echo leakage.

Self-attention mechanisms [9], [10] are good at capturing
global information and contextual relationships as a way
to enable better modeling. The authors in [11] propose a
lightweight Axial Self-Attention (ASA) module to model along
the frequency and time axis separately, which improves the
network’s ability to capture the global internal relationships
between time domain features and frequency domain features
separately with a smaller number of parameters and opera-
tions. Moreover, PCNN [12] proposes a Self Channel-Time-
Frequency Attention (Self-CTFA) Module to capture the con-
nections between signal features from the channel, frequency,
and time domain dimensions, respectively, and finally performs
feature extraction and fusion. In addition, the study reported
after ablation experiments that F-attention has a great impact
on the model effect. This shows that for processing speech
signals, there is a great potential for a multidimensional self-
attention mechanism, leveraging cross domain information.

Noting that current approaches tend to use one time-
frequency attention for modeling, we propose a diverse time-
frequency attention neural network in designing a AEC system.
After initially extracting the features of the far-end refer-
ence signal and the near-end microphone signal, we esti-
mate the time delay and align them, and then two differ-
ent time-frequency attention modules (ASA and Frequency
Transformation Block (FTB)) to capture the contextual and
global information of the features are developed. We observe
that multiple temporal-frequency attention outperforms single
temporal-frequency attention in learning the contextual rela-
tionships between the time domain and the frequency domain
simultaneously, which is particularly important for the model
to differentiate between the far-end speaker’s voice, the near-
end speaker’s voice, and the background noise. This is also
the reason why our model presents an excellent performance
in double-talk scenarios.

II. PROBLEM FORMULATION

The microphone signal y(n) is composed of the echo signal
d(n), the near-end speech signal s(n), and the background
noise v(n), given by

y(n) = d(n) + s(n) + v(n), M
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Fig. 1: The proposed DTFAN, where yellow represents ASA and green represents FTB (Best viewed in color).

where n is sample index, d(n) is obtained by convolving the
far-end reference signal 2:(n) with the room impulse response
h(n). The task of AEC is to estimate s(n) with 2(n) and y(n)
provided and the whole process can be formalized as

SAragi:fgo (Xra}/?‘aXia}/;)a (2)

where f and ¢ represent our network and its parameters, and
X, X;, Y., Y, are the real and imaginary parts of the complex
spectrum obtained by short-time Fourier transform (STFT) of
z(n) and y(n). Similarly, S,, S; are the real and imaginary
parts of the complex spectrum of the estimated clean speech.

A. Network Architecture

The structure of the whole network is depcited in Figure
1. The main body of our model is an encoder and decoder
structure with a bottleneck layer. The encoder has two branches
to extract features from the far-end reference signal and the
near-end speech signal, respectively. After aligning the signal
features, the ASA [11] and FTB [13] continue to capture
the global information of the features alternatively. After the
features passing through the decoder, the real and imaginary
parts of the estimated speech spectrum are output by a CCM
block [8].

1) Encoder: The encoder consists of a near-end mic branch
and a far-end reference signal branch with five and two
encoding blocks, respectively. The first two encoding blocks of
the two branches are used to initially extract the signal features
and feed the features into the Align Block[8], which learns
the intrinsic relationship between the two signal features by
estimating the delays between the two signals, and then feeds
the features into the microphone branch after alignment. The
purpose of doing so is that after alignment the network can
better cancel out the echos. After that, three encoders further
extract the features. The encoders consist of a convolutional
block (all have), ASA (last three have), and FTB (last two
have), respectively. The convolution block consists of a down-
sampled convolutional layer, a batch normalization (BN) layer,
and an ELU function. The downsampling convolution layer
has a convolution kernel size of 4x3 and a step size of 1x2
to reduce the number of bins along the frequency values. In
addition, the convolution is padded to maintain causality.

2) Bottleneck: In the bottleneck layer, we first expand the
feature tensor X € R®*¢***f along the channel and frequency
axes as X € R0*¥<(ef) where b, ¢, t, f € N denote the batch
size, the lengths of the channel, time, and frequency axes. After
that, X is fed into the GRU layer for contextual modeling
and then into the linear projection, and the resulting tensor is
reshaped back to its original shape. To reduce the number of
hidden units, we added a linear injection after the recurrent
layer, which additionally improves the training stability and
model performance.

3) Decoder: The network contains five decoders and each
decoder consists of FTB (first two have), ASA (all have), sub-
pixel convolution block [14] (all have). Since the features are
down-sampled in the encoder part and the length of the feature
tensor is decreasing along the frequency axis, the decoder
part needs to be up-sampled. As opposed regular up-scaling
method based on transposed convolution, we use sub-pixel
convolution instead. For X € RY*extxf it is transformed
to X € RV*2eXtXf by a regular convolution with 2c filters,
and then reshaped to produce Y € RY*¢***2f This is done
by learning a series of filters to up-sample the feature map. A
sub-pixel convolution block consists of a sub-pixel convolution
layer, a BN layer, and an ELU function stacked together.
The last sub-pixel convolution block has no BN layer and
no ELU function. In addition, we use point-wise convolution-
based skip connection instead of summing or concatenation.
The encoder features are point-wise projected and added to
the corresponding decoder outputs. In this way, the number of
channels in the encoder can be chosen more flexibly. At the end
of the decoder, the CCM module processes the last obtained
feature map to reconstruct the spectrum of the estimated clean
speech.

4) ASA and FTB: To reduce computation and memory
and to better handle long sequence signals represented by
speech signals, we leverage the modeling ability of ASA and
FTB. The structure of ASA is shown in Figure 2, where C'i
denotes the number of input feature channels and C' denotes
the number of attention channels. ASA computes the attention
scores sequentially along the frequency and time axes, which
can be abbreviated as F-attention and T-attention. These at-
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Fig. 2: Axial Self-attention (ASA).
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tention matrices help the model capture potential relationships
between signal feature long distances in both the frequency
and time domains. In our network, the ASA module is applied
to the last three decoders and all encoders.

In addition, consider fact that ASA is a purely convolutional
module, to further diversify the utilization of time-frequency
attention mechanisms, we introduce the FTB module into the
network. We observe that acquiring time-frequency attention
through multiple methods is more conducive to learn con-
textual information in the time and frequency domains. The
structure of FTB is shown in Figure 3, where C' and Cr are
the number of input channels and the number of attention chan-
nels, respectively, and it is worth noting that Freq-FC is a key
part of FTB. It contains a trainable frequency transformation
matrix for feature map slicing at each time point, which is also
an important difference from ASA. FTB solves the problem
that 2D convolutional has a small perceptual field. Therefore,
we embed FTB into the last two encoders and the first two
decoders to produce the feature output of a frequency-aware
field to further attend different frequencies.

B. Loss Function

We employ a joint loss function as the optimization objec-
tive. Specifically, we use the mean square error (MSE) loss in
the frequency domain and the scale-invariant signal-to-noise
ratio (SI-SNR) [15] as the loss function in the time domain.
The final loss function is the summation of them, given by

Loss = —SI — SNR + log,o(MSE(S, S)), (3)

where S, S are the spectrum of the target speech and the
estimated clean speech.
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Fig. 3: Frequency Transformation Block (FTB).

III. EXPERIMENTS
A. Dataset

To train our model, four types of signals need to be prepared:
the near-end speech signal, background noise signal, far-end
speech signal, and the corresponding echo signal.

We use the synthesized dataset provided by the AEC Chal-
lenge [16] for the far-end speech signals and the corresponding
echo signals. This dataset consists of 10,000 10-second clips.
The first 500 of these clips were used to create the test set and
the last 9500 clips were used to create the training set.

For the near-end speech signal and background noise, we
used the clean speech signal and background noise signal
provided by DNS challenge [17]. Approximately 6.8 hours of
clean speech and 5.5 hours of background noise signals were
used to create test sets. In addition, we cleaned the background
noise using the open-source model sliro-vad [18], cropping
out potential segments containing human voices. Finally, we
produced a 300-hour dataset for training and validation of the
model, with a 4:1 ratio of the training set to the validation
set and 10 seconds per audio clip. To improve the model’s
generalization ability, the signal-to-return ratio (SER) was
randomly set from -15 dB to 15 dB and the SNR was randomly
set from 5 dB to 25 dB.

B. Experimental setup

All audio sampling rates are 16 kHz. For the network, the
STFT window length is 512 points, the window shift is 256, the
FFT size is 512, and the Hanning window is used. Our model is
trained using Adam’s optimizer with an initial learning rate of
le-4 for 150 epochs. If there is no improvement in performance
for 3 epochs, the learning rate is halved.

For the encoder, the down-sampled convolution blocks for
the far-end reference signal branch have 64 and 128 filters,
respectively, while the number of filters for the near-end
microphone signal branch is 32, 128, 128, 128, and 128. The
number of filters in the Sub-pixel convolution in the decoder
is 128, 128, 128, 64, and 27. The number of attention channels
in all ASA modules is one-fourth of the number of input
channels. The attention channel of the two FTBs closer to the



TABLE I: Ablation experiment. DT: doubletalk, ST: single-talk, FE: far-end, NE: near-end, T-att: T-attention, F-att: F-attention.

DT-Noisy DT-Clean ST-FE ST-NE
CASE T-att F-att FIB PESQ STOI PESQ STOI ERLE PESQ STOI
1 v v v 2.46 0.86 2.72 0.89 46 3.27 0.95
2 X v v 2.29 0.83 2.56 0.87 42 3.10 0.94
3 v X v 2.33 0.84 2.57 0.87 39 3.15 0.94
4 X X v 2.14 0.81 2.39 0.85 42 3.04 0.94
5 v v X 2.19 0.82 2.45 0.86 24 3.15 0.94

bottleneck layer is set to 8, and in the remaining two FTBs,
the attention channel is set to 15. The hidden unit of the GRU
in the bottleneck layer is 320.

C. Performance metrics

We use perceptual evaluation of speech quality (PESQ)
[19] and short-time objective intelligibility (STOI) [20] to
evaluate the model’s performance in double-talk and near-end
single-talk scenarios. In addition, we use the echo return loss
enhancement (ERLE) [21] to measure the model’s performance
in far-end single-talk scenarios. Finally, the AEC challenge
provides subjective evaluation results based on the average
P.808 mean opinion scores [22].

IV. RESULTS AND ANALYSIS

To validate the role of diverse attention in the network, we
first conducted ablation experiments for five different cases,
and the results are shown in Table I. We observe that the
model performance improves substantially in all scenarios
after adding each type of attention. Notably, when CASE
2 is compared to CASE 3, T-attention is found to have a
greater impact on performance than F-attention. We believe
this is due to the down-sampling of features by the model in
the encoder stage, which leads to a reduction in the feature
dimensions along the frequency axis and objectively reduces
the F-attention perceptual field. The impact is also highlighted
when comparing CASE 4, CASE 5 with CASE 2 and CASE 3.
Comparing Case 4 and Case 5, we can see that ASA and FTB
have different impacts on performance in different scenarios.
The reason is the FTB focuses more on modeling along the
frequency axis, while the ASA models along both the time and
frequency axes.

TABLE II: Objective performance metrics on the synthetic test
set.

DT-Noisy DT-Clean  ST-FE ST-NE
Methed Para PESQ STOI PESQ STOI ERLE PESQ STOI
Unprocessed - 1.66 0.70 1.81 0.73 - 2.64 0.92
Baseline23 - 205 078 242 0.84 39 277  0.92
DTLN 10M 214 081 237 0.84 33 3.01 094
DeepVQE 6.1M 240 087 2.63 0.90 50 3.14 095
Ours 5.IM  2.64 0.88 288 0.91 48 3.38  0.96

For objective performance evaluation, we compare our net-
work with three other methods, the open-source baseline model
of the 2023 AEC Challenge, DTLN, and DeepVQE, where the
DTLN and DeepVQE models are retrained with our dataset,
and the number of hidden units of the LSTM in the DTLN

is 512. From the results in Table II, our method outperforms
the other methods in almost all scenarios, especially in the
double-talk scenario.

TABLE III: AECMOS of the blind test set in interspeech2021.
DT ECHO means more associated with residual echo, DT
Other means more related to other degradation.

DT Echo DT Other ST FE Echo ST NE

Method — "Hhyios DMOS DMOS Mos ~ Overall
Bascline2l 4.0 345 382 I8 387
Baseline23 4.3 3.93 4.41 419 421
F-TLSTM 444 3.90 4.44 378 414

GCCRN 436 423 4.34 426 429
DecpVQE 4.5 415 4.53 405 432

Ours .63 424 2,46 427 440

(a) Microphone signal

(d) DTFAN

(c) DeepVQE

Fig. 4: A double-talk utterance in synthetic test set.

We also conducted experiments using the blind test set
Interspeech2021 and the results are shown in Table III.
We compare with four methods, the Interspeech 2021 AEC
Challenge Baseline [16], the ICASSP 2023 AEC Challenge
baseline [23], F-T-LSTM [7], GCCRN [3] and DeepVQE]JS].
The F-T-LSTM employs a complex neural network to bet-
ter mine the phase information for modeling. At the same
time, the F-LSTM and T-LSTM are set up at the bottleneck
layer to scan the time and frequency axes, respectively, for



temporal modeling. The GCCRN first estimates the linear
echo using the partitioned block frequency domain least mean
square (LMS) algorithm [4]. It thereafter performs residual
echo cancellation and noise suppression using the GCCRN
network. The GCCRN employs gated convolution instead of
ordinary convolution, which learns the features of the channel
and different spatial locations as a means of selecting the
generating mechanism, employs a partitioned LSTM at the
bottleneck layer for temporal modeling, and finally decodes
the real and imaginary parts for output. In DeepVQE, a self-
attention based alignment module is designed to align the
near-end microphone signal features with the reference signal
features, and subsequently the signal features are fed into
the encoder-decoder structure network to finally obtain the
estimated near-end speech. Our model performs well in the
double talk scenario, maximizing the quality of the near-end
speech while eliminating echoes, producing the highest overall
score.

Finally, to visually see the differences, we provided the
produced spectrum in synthetic dataset, depicted in Figure 4.
Compared to DTLN and DeepVQE, the proposed DTFAN
produces more details in harmonics and preserves speech
signal better in high frequency. This further showcases the
benefits using diverse attention mechanism.

V. CONCLUSIONS

In this paper, we observed that diverse time-frequency atten-
tion is better than single time-frequency attention in learning
the contextual relationship between time and frequency do-
mains, which is important for modeling the distinction between
far-end speaker speech, near-end speaker speech, and back-
ground noise. Based on that, the proposed DTFAN integrates
ASA and FTB to diversify learn global information extraction
and modeling. Experiments show that diverse time-frequency
attention leads to a superior AEC performance compared to
single time-frequency attention.
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