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Abstract—Semi-supervised object detection has emerged as
a promising paradigm to alleviate the data annotation burden
by utilizing a small set of labeled data in conjunction with a
larger pool of unlabeled data. Current state-of-the-art methods
commonly employ self-training strategies, using pseudo labels to
learn from unlabeled data. However, pseudo labels are inherently
noisy, particularly in the early stages of training. In this paper,
we propose a contrastive learning approach to enhance semi-
supervised object detection. Departing from conventional box-
level predictions, our method introduces consistency regulariza-
tion at the feature-level representation. Specifically, we leverage
candidate boxes selected by the Region Proposal Network (RPN)
for Region of Interest (RoI)-based contrastive learning and in-
troduce pixel-level comparisons for spatial-aware loss calculation.
Our experiments demonstrate that the proposed RoI-enhanced
contrastive learning effectively enables the model to extract
additional information from unlabeled data.

I. INTRODUCTION

In recent years, remarkable progress in object detection
has been driven by supervised learning methods, leverag-
ing abundant labeled training data [1]. Yet, the resource-
intensive process of obtaining accurate annotations has led
to a growing interest in semi-supervised approaches. These
approaches combine limited labeled data with a wealth of
unlabeled data to optimize object detection performance [2],
[3]. Within this domain, the Teacher-Student Mutual Learning
framework, renowned for its effectiveness in self-training for
semi-supervised object detection [4], has gained significant
attention.

Despite the various methods for utilizing pseudo-labels gen-
erated by evolving teacher models, their universal applicability
across diverse datasets remains a challenge, encompassing
fixed confidence thresholds to sophisticated filtering mecha-
nisms [5]–[7]. This paper proposes an alternative solution for
leveraging unlabeled data in semi-supervised object detection.

The Teacher-Student framework introduces varying de-
grees of visual augmentation to unlabeled data, creating both
strongly and weakly augmented image versions. Pseudo-labels
are generated by the teacher model on weakly augmented
images, while the student model learns from filtered pseudo-
labels on strongly augmented counterparts. This process mir-
rors the contrastive learning approach commonly used in self-
supervised learning, such as BYOL [8] and SimpleCL [9].
The distinction lies in the computation of the supervised
loss or the similarity—where the former calculates the loss

Fig. 1. Analogy between Semi-Supervised Learning and Self-Supervised
Learning.

from prediction boxes, the latter does so from feature-level
representations, as illustrated in Fig. 1.

Despite the commonality in the self-training process,
pseudo-labels generated by the teacher model inevitably in-
troduce label noise. Nevertheless, deep neural networks have
shown the ability to effectively memorize arbitrary noisy
labels during training [10], emphasizing the importance of
a strategy to enhance the utilization of unlabeled data. The
current landscape of self-supervised learning methodologies
has demonstrated the efficacy of learning visual representations
from unlabeled data. Specifically, approaches grounded in
instance discrimination, treating each image as a distinct class
and utilizing a contrastive learning objective, have achieved
significant success [8], [9], [11], [12]. In particular, contrastive
learning seeks to encode image features by mapping multiple
augmented views of the same image to a trainable embedding
space. This label-free approach significantly diminishes the
reliance on manual annotation in datasets, presenting a cost-
effective solution for model training. While self-supervised
learning methods exhibit success in downstream tasks even
in the absence of a filtering process, our motivation lies in
incorporating this strategy to foster feature learning indepen-
dent of (pseudo) labels in the context of semi-supervised object
detection.

However, when transitioning these learning methods to
object detection datasets such as MS-COCO [13], a discernible
decline in learning performance becomes evident. Most con-



trastive self-supervised methods are predicated on the assump-
tion of semantic consistency in images. In these methods, the
entire image is regarded as object-centric, assuming that a
single instance predominantly occupies the image space, as
is often the case in datasets like ImageNet [14]. While this
assumption facilitates leveraging semantic consistency for ef-
fective representations in single-label classification tasks, real-
world images deviate from this premise. In practice, images
may comprise diverse semantic content, with instances varying
in size and appearing at various locations within the image.

In this paper, we present a contrastive learning approach
for semi-supervised object detection. Our approach involves
processing images through the Faster-RCNN backbone [1]
to generate feature maps, which are then subjected to the
Region Proposal Network (RPN) to identify candidate boxes
likely to be foreground objects. Unlike using image-level
representation, we perform box-level contrastive learning by
Region of Interest (RoI) pooling on feature maps generated
from different augmented images at the same locations. Fur-
thermore, we avoid global pooling during the contrastive loss
calculation. Instead, we choose to compute the loss based
on features extracted from corresponding locations in two
augmentations. This spatially aware approach retains crucial
feature information, as will be explored further in the ablation
study (Section IV-C). The main contributions of this paper are
summarized as follows:

• We present a contrastive learning approach to improve
semi-supervised object detection, performing consistency
regularization not only by aligning the box predictions
to pseudo boxes but also by considering feature-level
representations.

• To address the challenge of object detection, the con-
trastive loss is computed at the box level, rather than
on the entire image. Furthermore, the loss computation
is spatially aware.

• Through experiments, we demonstrate that contrastive
learning on RoI features can enhance the model’s ability
to gain additional information from unlabeled data.

In the following sections, we begin by reviewing related
studies in Section II. Section III outlines the main investigation
method. Finally, experiments and results are discussed in
Section IV, and the paper concludes in Section V.

II. RELATED WORK

A. Semi-Supervised Learning

In the realm of semi-supervised learning, two predominant
methodological approaches have emerged: one emphasizes
data augmentation and perturbation of the input data, while
the other centers around consistency regularization. Notewor-
thy examples include MixMatch [15], which applies multiple
augmentations to unlabeled images, averages the predictions of
these augmented images, and sharpens them as pseudo-labels
for model training. Similarly, FixMatch [16] employs both
strong and weak augmentations on unlabeled images, requiring
the model’s predictions to remain consistent across different

versions of the same image. Both methodologies strive to
maintain stable predictions across varied inputs, ensuring con-
sistency even in the face of augmentation or perturbation [17].

However, the architectural intricacies of object detection
models surpass those of image classification, demanding a
more nuanced approach when adapting strategies from the
image classification domain.

B. Semi-Supervised Object Detection

Recent advancements in semi-supervised object detection
have been propelled by pseudo-labeling methods. STAC [3]
initiates the process by generating pseudo-labels using a pre-
trained model, subsequently fine-tuning the detection model
by integrating these labels with strongly augmented data.
Methods such as Unbiased Teacher [2], Instant Teaching [18],
and Soft Teacher [19] dynamically generate pseudo-labels on
weakly-augmented data while training the model on strongly-
augmented data. This approach not only produces higher-
quality pseudo-labels but also enhances the model’s detection
capabilities.

Pseudo-labeling strategies vary: Unbiased Teacher [2] em-
ploys a fixed confidence threshold to dynamically filter pseudo-
labels, Active Teacher [7] utilizes three metrics derived from
confidence values across the entire image, and Dense Learning
[5] applies an Adaptive Filtering operation to segment pseudo-
labels into foreground, background, and ignored areas. Label
Matching [6] assumes that the class distribution in the unla-
beled data should resemble that in the labeled data, adjusting
thresholds dynamically to create high-quality pseudo-labels
accordingly.

However, the generation of pseudo-labels inherently intro-
duces label noise. Deep neural networks have demonstrated
the ability to effectively learn from noisy labels during training
[10], emphasizing the need for robust strategies to utilize unla-
beled data in the context of semi-supervised object detection.

C. Self-Supervised Learning

Self-supervised learning has emerged as a compelling
research area within computer vision, showcasing notable
achievements in recent years. Diverging from traditional super-
vised learning, self-supervised approaches eliminate the need
for manual data labeling. Instead, these methods capitalize on
inherent data structures, providing implicit supervision through
pretext tasks designed to learn meaningful representations.
Pioneering works such as RotNet [20], jigsaw puzzles [21], and
predicting relative patch positions [22] have laid the foundation
for self-supervised learning, producing transferable embed-
dings that exhibit efficacy in tasks like image classification.

In recent advancements, contrastive learning has played a
pivotal role. Methods like SimCLR [9] transform images into
multiple views, minimizing the distance between identical
views and maximizing distances between different views in
the feature map. SimCLR, for instance, employs the InfoNCE
loss [23] to align similar views in the embedding space.
Distinctively, BYOL [8] utilizes asymmetric neural networks,
eliminating the need for negative pairs during training. SwAV
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Fig. 2. Flowchart illustrating our semi-supervised object detection framework trained with RoI-enhanced contrastive learning.

[12] introduces an online clustering component to prevent
training collapse, leveraging soft encoding and prototype-based
predictions, all achieved without relying on a memory bank
[11].

In summary, both contrastive learning in self-supervised
fields and semi-supervised learning share the common goal
of making consistent predictions across different augmented
images. However, the distinction lies in the calculation of loss:
self-supervised learning assesses feature similarity, while semi-
supervised learning employs model-predicted labels to calcu-
late loss. This key difference is underscored by the presence
of a small amount of labeled data in semi-supervised learning,
enabling the use of meaningful pseudo-labels in subsequent
training. Incorrect pseudo-labels can lead to the model learning
erroneous information, particularly in semi-supervised object
detection. Thus, effective strategies for pseudo-label filtering
and generation become crucial research directions. Combining
the feature-based learning concept from self-supervised learn-
ing could offer a novel direction for pseudo-labeling methods,
enabling the model to extract more valuable information from
unlabeled data while striking a balance between the quality
and quantity of pseudo-labels.

III. METHOD

In this section, we begin by outlining the semi-supervised
object detection problem. Subsequently, we introduce our pro-
posed semi-supervised object detection model, which leverages
two approaches for learning from unlabeled data: one based
on pseudo labels and another based on box-level feature
representations.

A. Problem Definition

The semi-supervised object detection problem involves a set
of labeled data Ds = {(xs

i , y
s
i )}

Ns
i=1 and a set of unlabeled data

Du = {xu
i }

Nu
i=1 used for training the model, where Ns and Nu

represent the numbers of labeled and unlabeled images, respec-
tively. Each labeled image xs is accompanied by corresponding
annotations ys, encompassing the positions, dimensions, and
classes of bounding boxes capturing foreground objects.

B. Semi-Supervised Object Detection with Contrastive Learn-
ing

1) Background: Our object detection model builds upon
Faster-RCNN [1], incorporating a Feature Pyramid Network

(FPN) and ResNet-50 [24]. Initially trained with a limited set
of labeled data (e.g., 1% of the COCO training set), the model
optimizes the supervised loss Lsup involving box-regression
and box-classification losses—–a stage referred to as the burn-
in.

Following the Unbiased Teacher approach [2], the model
transitions to the teacher-student mutual learning stage. Du-
plicating the detector generates two models (teacher θt and
student θs). In this stage, the teacher model generates pseudo-
labels on weakly-augmented images, filtered through a confi-
dence threshold. The student model then employs these filtered
pseudo-labels for supervised training on strongly-augmented
images, computing the object detection loss Lunsup. This
iterative process creates a symbiotic relationship, with the
teacher guiding the student and the student enhancing the
quality of pseudo-labels.

To address potential inaccuracies in pseudo-labels, espe-
cially during early training, we propose leveraging feature-
level representations from the feature maps to enhance the
utilization of unlabeled data.

2) RoI-Enhanced Contrastive Learning: We extend Unbi-
ased Teacher with contrastive learning, introducing two pro-
jectors and one predictor (Fig. 2). After generating proposals,
we perform RoI pooling on the feature maps of both teacher
and student models. A projector is added to the teacher branch,
and a projector and a predictor are added to the student branch.
Exploiting the inherent strong and weak augmentations, we
compute additional contrastive learning loss LCL. Utilizing
Faster-RCNN, we focus contrastive learning on positions se-
lected through the Region Proposal Network (RPN), likely to
be foreground objects. Specifically, we consider only the top
10 proposals based on the likelihood of being in the foreground
returned from the teacher RPN.

Given these top 10 proposals, we perform RoI pooling on
the student model’s feature map, obtaining corresponding RoI
features ft and fs. We then feed ft to the projector to obtain
Zt, and feed fs to the projector and the predictor to obtain Zs.
Utilizing an asymmetric network for contrastive learning [8],
which enhances feature-level representations, we compute the
contrastive loss as follows:

LCL = 2− 2 · ⟨Zt, P (Zs)⟩
∥Zt∥2 · ∥P (Zs)∥2

. (1)
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Fig. 3. Difference between the spatial-unaware (left) and the spatial-aware
(right) loss calculation.

3) Dense Contrastive Learning: Contrary to applying
global pooling to RoI features for contrastive loss calculation,
we retain spatial information in the RoI features. We compute
the contrastive loss across all positions in both teacher and
student model features, as in [25]. Figure 3 illustrates the
spatial-aware loss calculation.

The projector and predictor are implemented as multiple-
layer perceptrons (MLPs), following [25], [26]. All features
entering the projector avoid global pooling, with the projector
consisting of three 1×1 convolutional layers. Each layer, except
the final one, is followed by a batch normalization layer and
a ReLU layer. The predictor comprises two 1×1 convolutional
layers, with the first having an output dimension of 64,
followed by batch normalization and ReLU, and the second
having an output dimension of 256.

Finally, the parameters of the student model are updated
through the supervised, unsupervised detection and contrastive
loss:

Ltotal = Lsup + Lunsup + LCL. (2)

The exponential moving average (EMA) strategy updates the
teacher model from the trained student model for each itera-
tion:

θt ←− αθt + (1− α)θs. (3)

During inference, the teacher model is utilized for predictions.

IV. EXPERIMENTS

A. Experimental Settings

This section presents the results of our experiments. To
ensure a fair comparison across methods, we adopted Faster-
RCNN with ResNet50-FPN as the backbone for object de-
tection, following the setup in [2]. A confidence threshold of
δ = 0.7 was utilized. Data augmentation techniques included
random horizontal flips for weak augmentation, along with
random color jittering, grayscale, Gaussian blur, and cut-out
patches for strong augmentations. The exponential moving
average (EMA) rate α was set to 0.99. However, due to
computational resource constraints, our model was trained with
a smaller batch size (16).

We conducted our experiments on the MS-COCO dataset
[13]. In line with [2], we randomly sampled 1%, 5%, and
10% of images from the approximately 118,000 images in
the train2017 subset to serve as labeled training data. The
remaining images were utilized as unlabeled data. The test set
comprised 5,000 images from val2017. Evaluation metrics

were based on AP50:95, denoted as mAP, and the performance
was assessed on the teacher model.

B. Results

Our proposed method is designed as a versatile, plug-and-
play framework compatible with various teacher-student archi-
tectures. Developed initially based on the Unbiased Teacher [2]
framework, we exclusively compare our method with Unbiased
Teacher in this study to showcase the adaptability within this
well-established teacher-student paradigm.

Table I displays the detection performance of the supervised
baseline, Unbiased Teacher [2], and our method. Our proposed
method outperformed Unbiased Teacher across all settings,
achieving improvements of 2.93%, 1.89%, and 1.01% for the
1%, 5%, and 10% labeled data settings, respectively. The
mAPs at different iterations are visualized in Fig. 4. It’s
important to note that both methods underwent the same burn-
in process.

TABLE I
EXPERIMENTAL RESULTS ON COCO-STANDARD.

Method 1% 5% 10%
Supervised 9.05 18.47 23.86
Unbiased Teacher [2] 20.19 28.20 31.46
Ours 20.78 28.73 31.77

C. Ablation Study

To gain a deeper understanding of the proposed method,
we conducted additional experiments focusing on the impact
of RoI-enhanced contrastive learning, spatial-aware loss com-
putation, and the selection of the top-scored RoI. In these
experiments, 10% of the images from the training set were used
to train the models, and mAP values were computed on COCO
val2017. To examine the effect of different contrastive
learning choices, we disabled the computation of consistency
between the teacher and the student models based on pseudo-
labels and focused solely on feature-level consistency learned
from unlabeled data.

1) Effect of RoI-Enhanced Contrastive Learning: In con-
trastive learning, we considered features from the candidate
boxes returned by RPN, rather than directly using features
obtained from the backbone network. We hypothesized that,
during the training of the Faster R-CNN-based object detector,
the RPN also learns to discover foreground objects. Intersec-
tion over Union (IoU) was calculated between the candidate
boxes and the ground truth boxes to categorize all boxes
into highly overlapped (positive) or lowly overlapped/non-
overlapped (negative) samples. Confusing candidate boxes that
did not sufficiently overlap with ground truth were excluded
from loss calculation. This approach ensures that the con-
trastive learning process focuses exclusively on object-level
information. Figure 5 (a) illustrates the performance compari-
son of using RoI features versus the entire feature map. RoI-
based features consistently outperformed the alternative after
reaching 20,000 iterations, validating the effectiveness of RoI-
based contrastive learning.
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Fig. 4. Comparison with Unbiased Teacher [2] on COCO-Standard using 1%, 5%, and 10% labeled training data, showcasing the mAP values at different
training iterations.

(a) (b) (c)

Fig. 5. Performance comparison of (a) contrastive learning with RoI features and the entire feature map; (b) spatial-unaware and spatial-aware contrastive
learning; (c) using different numbers of RoIs.

2) Effect of AvgPool: When computing the contrastive loss,
we consider that if the features extracted from the candidate
boxes undergo global pooling, as in conventional methods,
spatial information would be lost, potentially impacting the
true similarity between two boxes. Figure 5 (b) displays
the performance comparison of spatial-unaware (using global
pooling on the features) and the proposed spatial-aware meth-
ods. Our approach consistently achieved higher mAP values
after 30,000 iterations.

Fig. 6. Visualization of top 10 (top row) and top 100 (bottom row) high-
scoring RoIs.

3) Number of RPN Proposals: In the proposed method, we
utilized the top 10 boxes in contrastive learning. Alternatively,
we experimented with other choices, including using the top
100 and all candidate boxes. Figure 5 (c) shows the comparison
result. In this experiment, Non-Maximum Suppression (NMS)
with an IoU threshold of 0.5 was used to eliminate overlapping
boxes. After NMS, each image retained around 300 candidate
boxes out of the initial 1000 boxes. Figure ?? illustrates that
when using all candidate boxes, the model’s mAP is generally

lowest. When using top 100 candidate boxes, the model’s
early-stage mAP is roughly comparable to that of using the top
10; however, it falls behind after 30,000 iterations. To further
investigate, we randomly selected three samples and visualized
the RoIs in Figure 6, revealing that many boxes in the top 100
selection set do not effectively capture objects. Consequently,
the effectiveness of performing contrastive learning on these
boxes is questionable. Therefore, we adopted the top 10 high-
scoring candidate boxes for contrastive learning.

V. CONCLUSION

In this paper, we have presented a contrastive learning
approach to enhance semi-supervised object detection. Specif-
ically, we leverage the candidate boxes selected by the Region
Proposal Network (RPN) to facilitate RoI-based contrastive
learning. Additionally, we incorporate pixel-level comparisons
to enable spatial-aware loss calculation. Our experimental re-
sults showcase the effectiveness of the proposed RoI-enhanced
contrastive learning, coupled with pseudo-labeling, in extract-
ing valuable information from unlabeled data. This integration
not only enhances model performance but also mitigates the
impact of noisy pseudo-labels during consistency regulariza-
tion in semi-supervised object detection.

One future direction we have been pursuing is the vali-
dation of the proposed plug-and-play method on alternative
detection frameworks beyond Faster-RCNN [1]. Expanding
our approach to different models will provide valuable in-
sights into its adaptability and generalizability across various
architectures. By extending our methodology to a broader
spectrum of detectors, we aim to offer a robust and flexible
solution that can be tailored to different detection paradigms,
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ultimately advancing the state-of-the-art in semi-supervised
object detection.
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