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Abstract—Video frame interpolation presents a formidable
challenge in the domain of video generation, primarily due
to the intricate motion dynamics exhibited by objects within
video frames. With the advancements in deep learning, numerous
flow-based methods for video frame interpolation have emerged.
These methods aim to predict intermediate frames by leveraging
the estimation of motion information between frames. In this
paper, we propose a novel framework for modeling input video
frames, which employs a coarse-to-fine structure to extract
motion information between frames. Additionally, it incorporates
a Bidirectional Correlation Volume and a complementary module
of contextual features, specifically designed to pay attention to
the symmetry of the optical flow and shallow motion features.
We incorporate this dual attention to the knowledge distillation
part of the model, which further improves the performance of
the model. Leveraging this framework, our model demonstrates
the ability to accurately predict motion information between
frames, consequently producing visually appealing intermediate
frames.The code is available at https://github.com/famt0531/DAEK.

I. INTRODUCTION

Video frame interpolation(VFI) serves as a low-level task in
computer vision, utilized across various applications including
video post-processing and surveillance. Its objective is to
enhance the frame rate of a video sequence by generating
intermediate frames between input frames. This process aims to
achieve smoother video playback and mitigate motion blur[1],
[2]. Traditional approaches typically involve estimating the
optical flow between frames and subsequently interpolating
or extrapolating along the optical flow vector. While effective
with accurate optical flow, this method often yields significant
artifacts and blurring when the optical flow estimation is
imprecise.Moreover, they exhibit poor performance in scenarios
involving occlusion and variations in luminance.

Recent years, numerous flow-based VFI techniques have
emerged as prominent contenders in this domain[3]–[7]. These
methods employ bidirectional optical flow to discern motion in-
formation across frames and map corresponding pixel positions.
Utilizing estimated optical flow, they guide the warping process

by transforming input images to interpolated frame positions,
and blending them to preserve spatio-temporal correlations
within the expected motion[4], [5]. Despite their promising
outcomes, two main issues persist:

• Overlooking the correlation when estimating bidirectional
optical flow, resulting in accumulated optical flow errors.

• Paying few attention to deep network features, which leads
to missing detailed textures in the inference results.

To address the above limitations, in this paper, we propose
a novel network architecture termed DAEK, which extracts
coarse motion information, comprising intermediate optical
flow and features, via three CNN-based Motion Estimation
Blocks(MEB) in a coarse-to-fine fashion. Subsequently, these
coarse motion information undergoes refinement through the
Motion Refinement Blocks(MRB). During training, akin to
RIFE, we employ intermediate supervision. However, we
prioritize the accuracy of the generated optical flow of teacher
model so that we use a combination of MEB and MRB,
instead of directly employing the teacher module in RIFE.
Our contributions are summarized as follows:

• We employed bidirectional correlation volumes to focus on
the symmetry of motion at different stages of the network.
Additionally, we utilized feature point multiplication to
address the loss of motion information in the deeper layers
of the network.

• We applied our proposed dual motion attention mechanism
to a smaller model, which we trained as a teacher model
for knowledge distillation. The teacher model with dual
motion attention demonstrates a superior ability to guide
the student model in accurately inferring optical flow
information, compared to conventional teacher models

• We proposed a novel video frame interpolation framework,
which adopts a coarse-to-fine structure to capture the
motion information and considers the motion symmetry
and texture loss through double motion focus.



II. RELATED WORK

A. VFI
VFI, a complex task in low-level computer vision, has

seen the emergence of numerous innovative methods in
recent years, broadly categorized into flow-based and non-
optical flow-based approaches for motion simulation. In recent
research endeavors, optical flow estimation has emerged as an
indispensable component. For instance, Kong et al.[6] proposed
IFRNet, a video interpolation network with a single encoder-
decoder structure. It extracts feature pyramids from two input
frames, refines bidirectional intermediate optical flow fields,
and restores the desired output at the input resolution. Huang
et al.[8] introduced RIFE, which estimates intermediate flows
efficiently from coarse to fine, enhancing speed. They also
developed a privileged distillation scheme for training for
boosting performance. Jin et al.[9] created a compact model that
estimates bidirectional motion simultaneously using a flexible
pyramid recurrent framework, fine-tuning components within
optical flow research for improved performance.

B. Correlation Volume
Correlation volumes play a fundamental role in representing

matching costs across various computer vision tasks. In
the domain of VFI, several studies [9]–[11] have proposed
construction schemes inspired by PWC-Net [12]. However,
these schemes often focus solely on the local region’s cost
volume during matching, leading to inaccuracies when the
region undergoes distortion. In contrast, AMT[13], building
upon RAFT[14], transforms the unidirectional correlation
volume into a bidirectional one, effectively capturing multiscale
correspondence between frames. This compact global motion
representation facilitates precise optical flow prediction, partic-
ularly for large motions. In this work, we adopt the design of
AMT for the correlation volume construction.

C. Self Attention
Given the remarkable success achieved by Transformer in

natural language processing, there has been a surge in introduc-
ing Transformer to computer vision tasks, yielding promising
results. In VFI, Liu et al. proposed ConvTransformer[15] to
model long-term dependencies between 2D video frames in
both temporal and spatial domains. Similarly, Lu et al.[16]
utilized Transformer as an encoder in their model, enabling
it to learn relationships between each frame and others via a
self-attentive mechanism. However, many VFI methods based
on Transformer employ the self-attention mechanism as a
feature extractor, which can be computationally expensive due
to the large number of parameters involved. Therefore, rather
than directly using the Transformer for feature extraction, we
simulate its self-attention mechanism to supplement contextual
information during optical flow updating.

III. PROPOSED METHOD
A. Problem Description

Given two frames I0 and I1, the objective of Video Frame
Interpolation (VFI) is to generate the intermediate frame It,

where t ∈ [0, 1] represents the time step and is typically set
to 0.5 by default. Our proposed model follows an end-to-
end optical-flow based approach, illustrated in Fig. 1. We use
the same residual structure to extract appearance features and
context features, which are used to construct bidirectional cost
volumes and enrich the texture information in the deeper layers
of the network, respectively. The coarse motion information is
then refined in MRB.

B. MEB

MEB iterates to estimate intermediate flows utilizing a coarse-
to-fine structure, enabling effective handling of large motions.
For each MEB, the inputs consist of I0 and I1 which obtained
after bilinear interpolation downsampling, intermediate flows
flowi ∈ R4×H

′
×W

′

, mask Mi ∈ R1×H
′
×W

′

, intermediate
features Feati ∈ RC

′
×H

′
×W

′

(where i = 1, 2) which is
predicted by the previous MEB, and the Ĩ0, Ĩ1 obtained by
warping I0 and I1 with flowi (for the first MEB, we merely
input I0 and I1). Specifically, we employ three consecutive
motion estimation modules, each processing motion information
at different scales. Following the multi-scale strategy outlined
in RIFE[8], we set the scales to [1/8, 1/4, 1/2].

All MEBs share the same structure, realized entirely by
convolutional layers. Additionally, we output intermediate
features for each MEB, as shown in Fig. 2, which play a
crucial role in the subsequent optical flow update phase and
motion estimation phase. By including intermediate features,
our model retains more motion information during the iterative
process of generating optical flow at multiple scales.

Fig. 2. The structure of MEB. The Conv comprises 8 layers of convolutional
layers and PRELU units. Each convolutional layer utilizes a 3x3 convolutional
kernel with a stride of 1 and padding of 1.

C. MRB

After obtaining the initial bi-directional optical flow and
intermediate features, we utilize MRB to generate residuals
for the bi-directional optical flow and intermediate features.
These residuals are then used to update both the optical flow
and intermediate features. We use bidirectional cost volumes
to obtain the bidirectional matching scores between the two
real frames. Our feature matching is consistently performed at
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Fig. 1. The overview of the proposed model. The input frames are processed through MEB and MRB across three scales to generate bidirectional optical flow
(Ft→0, Ft→1) and Mask. The synthesis module then outputs the intermediate frame. Our teacher module generates distillation loss only during the training
phase and is discarded during inference.

a resolution of 1
8 . For each scale output of the MEB, we first

downsample them to 1
8 resolution using linear interpolation.

After updates, we then restore them to the original resolution.
We employ several convolutional layers to extract bidirectional
correlation features BCF ∈ RC×H

8 ×W
8 and coarse flow

features, then concatenate them along the channel dimension
to obtain the coarse motion information CMF , as follows:

CMF = Cat(Conv(Flowcoarse), Conv(BCF )) (1)

Where Cat represents the concat operation, and Conv for
convolution operation.

We posit that features at the shallow end of the network
encompass more textural details, whereas deeper layers tend
to encapsulate semantic information. However, as the network
depth increases, texture features become inevitably attenuated.
Therefore, we introduce Contextual Feature Complementary
Module(CFCM) that uses an attention mechanism to comple-
ment feature information at deeper layers of the network which
serves as a crucial component of MRB.

As shown in Fig.3, the context feature undergoes trans-
formation by a linear layer into Query,Key ∈ RC×H∗W .
Subsequently, the resulting outputs are multiplied and passed
through a Softmax unit to obtain Score. Meanwhile, the
CMF is transformed into V alue ∈ RCv×Hv×Wv

through a
convolutional layer with a kernel size of 1×1. The CFCM we
propose is essentially a feature enhancement method, so we
abandon the tedious calculation of multiplying the result of
Q and K and then multiplying it with V, and instead add it
to V. In order to better achieved feature fusion and feature

Fig. 3. The structure of CFCM, where the convolutional layer has a kernel
size of 1x1.

enhancement, we introduce a learnable parameter, initialized to
0, which is multiplied with the Score and added to the Value
to obtain Attn, This step can be expressed as:

Q,K = linear(contextfeature) (2)

Score = Softmax(Q
⊙

K) (3)
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V = Conv(CMF ) (4)

Attn = V + (Para
⊙

Score) (5)

Where linear represents fully connected layer, Softmax
represents Softmax unit, Conv represents convolution operation,⊙

represents multiplication.
Finally, we concatenate Attn with Flowcoarse and intermedi-

ate feature along the channel dimension and apply convolutional
layers to obtain the residuals which is added with coarse flow
and intermediate feature to achieve the goal of refining.

D. Enhanced Knowleage Distillation

We stack an extra MEB as the optical flow estimation module
for the teacher model, the MEB for the teacher model has the
same structure as the MEB for the student model, except that
extra ground truth is added as an input. In order to obtain a more
accurate labeling of the optical flow, we add a corresponding
MRB for the teacher model, which produces residuals only
for the flow involved in knowledge distillation, but not for the
intermediate feature, since the intermediate feature here are not
involved in subsequent parameter updates during the training
phase. After obtaining the optical flow labels generated by
the teacher model again, we use it and the intermediate flows
generated by the student model at different scales to generate
distillation losses, as follows:

Ldis =
∑

||Flowtea
t→0, F lowt→0||1 + ||Flowtea

t→1, F lowt→1||1
(6)

Where Flowtea
t→i(i = 0, 1) represents flow generated by teacher

module, Flowt→i(i = 0, 1) represents flow fields generated by
student module, and || · ||1 is the operation of L1 loss.

IV. EXPERIMENTS

A. Datasets

1) Training Dataset: We train our DAEK on the Vimeo-
90K[17] training set which comprises a total of 51,312 triples.
Each triple contains three consecutive video frames with a
resolution of 448 × 256. In training stage, we crop patches
from the original images with a resolution of 224 × 224 and
randomly augment it by performing horizontal and vertical
flipping, chronological flipping, and rotating by 90 degrees,
similar to other methods such as RIFE[8], AdaCoF[18].

2) Evaluation settings: We test the performance of DAEK
on the Vimeo-90K test set, UCF101[19] dataset, and SNU-
FILM[20] dataset, and for all the tables in this section, the best
performance is labeled by us in bold font.

B. Implementation Details

1) Loss function: DAEK uses three loss functions, which
including reconstruction loss Lrec, teacher reconstruction loss
Ltea
rec and distillation loss Ldis. The total loss L:

L = Lrec + Ltea
rec + λLdis (7)

where we set λ=0.01.

Our reconstruction loss quantifies the quality of the recon-
structed It and Igtt using the L1 loss function with the Laplacian
operator[21] which could be defined as:

Lrec = Lap(It, Igt) (8)

Ltea
rec = Lap(Iteat , Igt) (9)

where Lap is the Laplacian operator, It is the intermediate
frame of student module, Igt is the ground truth, and Iteat is
the intermediate frame of teacher module.

2) Training Details: DAEK was implemented using the
Pytorch framework and trained on a NVIDIA A30 Tensor
Core GPU. We used AdamW[22] as the optimizer with a
weight decay of 10−3. The initial learning rate is 10−4, which
is decayed to 10−6 by cosine annealing strategy during the
training process, and the whole training process requires 300
epochs with a batch size set to 32.

C. Performance Evaluation
1) Objective results: We compare DAEK to current

state-of-the-art methods including, IFRNet[23], AdaCoF[18],
BMBC[11], EBME[9], RIFE[8], M2M[24], as shown in TabI.

We conducted a subjective performance comparison on the
highly challenging extreme dataset of SNU-FILM, as shown
in Fig.4 and Fig.5. When interpolating across multiple video
frames, the motion within the frames becomes significantly
more extensive and highly nonlinear. DAEK demonstrates ex-
cellent performance when dealing with these complex motions.
Other optical flow-based methods exhibit noticeable blurring
and distortion, while the kernel-based method AdaCoF, although
maintaining motion continuity, suffers from pixel loss. In
contrast, DAEK preserves rich texture details and accurately
estimates motion continuity.

D. Ablation Study
1) Structural Ablation Experiment: We use models without

dual motion attention as the baseline, as shown in TabII. Here,
F indicates the use of intermediate features, while its absence
indicates no use. CA represents correlation attention, SFA
stands for shallow feature attention, and DA denotes dual
attention. The use of these two motion attention individually
brings certain performance improvements. When used together,
the model’s ability to represent bidirectional motion is further
enhanced. Additionally, the introduction of intermediate features
provides the intermediate frames with realistic texture details
and accurate motion representation.

TABLE II
VALIDITY OF DIFFERENT COMPONENTS OF OUR MODEL

Vimeo90K UCF01

Setting PSNR PSNR

Baseline 35.32 35.29

DAEK-F-CA 35.43 35.39

DAEK-F-SFA 35.31 35.35

DAEK-F-DA 35.66 35.45
DAEK-DA 35.49 35.30

4



TABLE I
THE EVALUATION OF VARIOUS INTERPOLATION METHODS ON VIMEO-90K TEST SET, UCF101 DATASET AND SNU-FILM DATASE.

Method Vimeo-90K UCF101 SNU-FILM Parameters
(M)

Runtime
(S)

Easy Medium Hard Extreme

IFRNet 35.80/0.979 35.29/0.969 40.03/0.990 35.94/0.979 30.41/0.935 25.05/0.858 5.0 0.02
AdaCoF 32.00/0.971 35.08/0.966 39.80/0.990 35.05/0.975 29.46/0.924 24.31/0.843 21.8 0.02
BMBC 35.01/0.976 35.15/0.969 39.90/0.990 35.31/0.977 29.33/0.927 23.92/0.843 11.0 0.3
EBME 35.58/0.978 35.30/0.969 40.01/0.991 35.80/0.979 30.42/0.935 25.25/0.861 3.9 0.02
RIFE 35.32/0.976 35.29/0.973 38.06/0.983 35.14/0.975 29.72/0.925 24.31/0.843 9.8 0.01

M2M-PWC 35.49/0.978 35.32/0.970 39.66/0.991 35.74/0.980 30.32/0.936 25.07/0.860 7.6 0.03
Ours 35.66/0.979 35.42/0.971 36.13/0.981 33.97/0.971 29.91/0.933 25.13/0.861 22.48 0.03

(a)Ground Truth (b)AdaCoF (c)IFRNet (d)M2M (e)RIFE (f)DAEK

Fig. 4. Comparison of Visualized Test Results on Extreme set of SNU-FILM

(a)Ground Truth (b)AdaCoF (c)IFRNet (d)M2M (e)RIFE (f)DAEK

Fig. 5. Comparison of Visualized Test Results on Extreme set of SNU-FILM

2) Knowledge Distillation Ablation Experiment: Knowledge
distillation can refine model parameters during the training
phase, guiding it to produce more accurate results. As shown
in Tab.III, the model’s performance significantly declines
without knowledge distillation. However, when we apply
the knowledge distillation proposed in RIFE, the model’s
performance improves. Since we incorporate dual motion
attention in the knowledge distillation process, the flow labels
generated by the teacher model include richer bidirectional
motion information, thereby guiding the student model to
produce more accurate outputs. To validate the robustness of
our enhanced knowledge distillation, we replaced the teacher
model in RIFE. This substitution resulted in a performance
improvement for RIFE as well.

TABLE III
ABLATION EXPERIMENTS FOR DISTILLATION SCHEMES.

Setting
Vimeo90K

PSNR

DAEK w/o distill 35.20

DAEK w/ RT 35.40

DAEK w/ OT 35.66
RIFE w/ OT 35.49

V. CONCLUSIONS

In this study, we introduce a novel model named DAEK,
which initially generates the base motion flow field using
MEB. Subsequently, the original motion flow field is refined
using MRB which integrates dual motion attention. These
designs aids DAEK in addressing complex motions in video
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frames resulting in significant results. Moving forward, we
aim to optimize the construction of bidirectional correlation
volumes, for instance, by employing the PatchMatch[25], to
reduce the computational load and inference time of the model.
Additionally, we plan to enhance the model’s architecture
to improve its learning capacity, as a higher initial learning
rate facilitates parameter optimization, ultimately boosting the
model’s learning effectiveness.
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