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Abstract—Speech-driven 3D facial animation models are es-
sential for creating human-like avatars that synchronize lip
movements realistically with speech. Despite these advancements,
it is still difficult to effectively convey a wide range of emotional
facial expressions that align with the voice. This issue arises due to
the lack of clearly labeled datasets for individual emotions as well
as insufficient inputs to adequately describe these emotions. To
overcome this challenge, we propose a re-categorization process
that reduces the data into four emotional groups: angry, sadness,
happy, and neutral. We use the re-categorized datasets to estimate
style embeddings, which serve to distinctly express emotions and
control their intensity. Additionally, we tackle the challenge of
slow inference speed in autoregressive models by introducing Ea-
vaNet, a non-autoregressive model utilizing gated activation units
(GAUs) and bidirectional long short-term memory (BLSTM)
modules for efficient prediction of 3D face mesh vertices. Our
proposed model outperforms previous state-of-the-art models
in terms of emotional expressiveness and lip synchronization
accuracy in both subjective and objective evaluations. 1

I. INTRODUCTION

Speech-driven 3D facial animation systems are now widely
used in personal assistants, computer games, film production,
and virtual communication systems. Recent developments in
artificial intelligence and 3D face modeling technologies have
made it easier to create lifelike avatars capable of accurately
synchronizing voice and lip movements[1]. However, most 3D
facial animation models have primarily focused on improving
lip synchronization rather than the full range of facial move-
ments associated with emotions conveyed by the voice. As a
result, these systems can generate unnatural facial expressions
that do not match the emotions expressed in the voice, which
limits their usefulness.

In this work, we identify two primary reasons for this
issue: low-quality training data labels and the lack of style
embeddings with facial expression information. Previous state-
of-the-art models [2], [3] have used 3D subject IDs as supple-
mentary input to produce speaker-dependent facial animations.
Although these models can create 3D avatars with high lip
synchronization accuracy, they often generate monotonous
facial expressions and fail to properly convey the emotional
nuances present in the input audio.

In our experiments, we utilize the BIWI dataset [4], which
includes emotional speech paired with corresponding expres-

1We provide a demo page with sample videos and reclassified emotion
labels at https://sam-0927.github.io/eavenet-demo/

sive facial movements, aligning with our research objectives.
However, this dataset has limitations; the emotion labels lack
consistency across different subjects, and its size is insuffi-
cient for effectively training. To address these challenges, we
reclassify the BIWI dataset into four emotions (angry, sadness,
happy, and neutral) to improve the model’s emotional expres-
siveness within the constraints of the dataset. Additionally, we
carefully select appropriate 3D subjects for each emotion for
clear emotional expression.

Our model extracts a style embedding, which encapsulates
the emotional expressions conveyed in the input speech utter-
ances. This style embedding is subsequently utilized to control
the expressions of the avatar, making its facial movements
more expressive even for subjects not previously seen during
training. Furthermore, we are able to adjust the intensity of
emotions by interpolating between style embeddings obtained
from the target emotion and the neutral one. This capability
enables us to generate avatars capable of displaying a broader
spectrum of emotional expressions than those present solely in
the existing BIWI dataset.

Our main contributions are as follows:
• To enhance facial expressions, we reclassify emotion

labels into four distinct categories and employ style
embeddings trained through intercross training[5].

• Our framework allows us to control the intensity of an
emotion by interpolating between the target emotional
style embedding and the neutral one.

• We use efficient short-term and long-term modeling ap-
proaches, such as GAU and BLSTM, to address the issue
of slow inference speed.

• We show that our proposed model outperforms previous
state-of-the-art models in terms of emotional expression
and lip synchronization accuracy in both objective and
subjective evaluation experiments.

II. RELATED WORK

The goal of a 3D face animation model is to create a 3D
avatar face from a given speech input, which can include text,
speaker ID, language ID, and emotion [2], [6], [7], [11]. [6]
introduce VOCA, along with the VOCASET dataset, which
incorporates FLAME [11]. MeshTalk [7] is trained on an in-
house dataset of 250 subjects, featuring more active facial
expressions than VOCASET, including blinking and eyebrow



TABLE I: Dataset of 3D facial animation.
Name Speakers Emotion Duration Release

VOCASET[6] 12 1 32m o
Multiface[7] (subset) 13 1 21m o

BIWI[4] 14 15 43m 35s o
[8] 2 N/A 8m 46s x

CREMA-D[9] 91 6 7442 clips x
AdaIN[10] 1 8 38m 57s x

movements. FaceFormer [2], based on the transformer [12],
employs two biased attention masks and a periodic position en-
coding strategy. By combining FaceFormer with a pre-trained
wav2vec 2.0 [13] to obtain speech representations, the model
auto-regressively predicts vertices. CodeTalker [3] estimates
facial movements as a discrete codebook and regressively
predicts motion codes to enhance vividness and reduce the
over-smoothed problem of facial movements.

[8] analyze formants and map emotional speech to 3D
vertices by adding emotional embeddings to the articulation
embeddings. They adopt a data-driven approach where the
model automatically learns the representation of emotional
states. [9] propose a model that predicts FLAME parameters to
control the type and intensity of the emotion while generating
expressive facial animations. During training, the model’s
emotion control module recognizes emotions from images, and
it recognizes emotions from audio during inference. EmoTalk
[14] generates emotional 3D facial animations by disentangling
content and emotion in speech using cross-reconstruction loss
with different emotion labels. [15] apply adaptive instance
normalization (AdaIN) to separate the two aforementioned
features, removing emotional information from speech and
converting it to content features, including specific emotions
using labels [10].

Previous studies on expressing emotions in 3D avatars have
used abundant datasets containing with rich emotional infor-
mation [8]–[10]. However, these datasets are often unavailable
to the public, which hinders further research as described in
Table I. To address this limitation, this study uses existing
publicly accessible datasets.

III. PROPOSED MODEL

A. Emotion classification

The BIWI dataset [4] contains 15 emotion types and 5
scales of intensity (1:not at all ∼ 5:very) that indicate the
level of emotional expression. Due to the small amount of
training data and the uncertainty between 15 emotion types,
we have decided to reclassify them into four distinct and broad
categories (angry, happy, sadness, and neutral) that are still
applicable to a wide range of service scenarios.

Five people were asked to re-label the emotion types using
Algorithm 1 by observing facial expressions in video samples
and listening to speech signals. Similar to the previous dataset,
each sample was evaluated by an average of three individuals.
As with the original dataset, people were asked to rate the
degree of emotional expression on a scale of 1 to 5. To ensure
the reliability of the labeling process and the consistency of
the training data, we selected 3D subjects when the average

Algorithm 1 Emotion labeling
Input: number of samples for each 3D subject n, evaluators m = 3,
Evaluated emotion label set V id,index

m ={v1,11 , v1,12 , v1,13 , ..., v14,n3 }, subject
set S={s1, ..., s14}, emotion set E={h : 0, a : 0, s : 0, ne : 0} of each
sample, average expression score Scr={scr1, ..., scr14}
Output: training subject set Str , emotion label L={l1,1, ..., l14,n}
1: for i = 1 to 14 do
2: if scri > 3 then
3: Str ← si
4: end if
5: end for
6: for i = 1 to 14 do
7: for j = 1 to n do
8: initialize values of E to 0
9: for k = 1 to 3 do

10: E[vi,jk ]← E[vi,jk ] + 1
11: end for
12: li,j ← E’s index with maximum value
13: end for
14: end for

emotional expression scores are greater than 3. For each
sample of the selected subject mesh, emotion types were
labeled based on the majority vote from the evaluators, which
further enhances the quality of the dataset.

B. EavaNet: Emotional avatar generator

Overview. Our proposed model EavaNet, shown in Fig. 1,
takes a speech signal S1:N = s1, ..., sN and a speaker ID as
input, and predicts the sequences of 3D face vertices V1:T =
v1, ..., vT using an encoder-decoder architecture. The encoder
is composed of an audio encoder and a style encoder, which
respectively predicts the contextual and style embeddings. To
address the issue of insufficient training data, we use a pre-
trained speech representation model, wav2vec2.0, for the audio
encoder. We freeze the weights of feature extractor in this
module during training. The extracted contextual embeddings
are first passed through a 1D convolution layer (Conv1D).
Then, they are combined with a style embedding and a speaker
ID before being fed to the decoder. The Conv1D operation
with a kernel size of 4, padding size of 2, and stride size of
1, performs a downsampling operation, which helps align the
timing information of the acoustic features with that of the
target visual vertices.
Style encoder. The style encoder computes a style embedding
e ∈ R1×d that represents the facial expressions linked with
each emotion from style vertices V emotarget

spk∗,utt∗ , where spk and
utt denote speaker and utterance, respectively. To ensure
that the style embedding exclusively encapsulates emotional
information rather than contextual cues, we select style ver-
tices solely from data within the same emotion category,
excluding those that contain the target vertices (spk∗ ∈ Str,
spk∗ ̸= spktarget and utt∗ ̸= utttarget, ∗ means ”any”). The
style encoder comprises a style extractor and a style token
layer (STL), resembling the architecture of GST-Tacotron [16].
The style extractor extracts style information from the style
vertices, while the STL encodes this style information into
a token that is then used by the decoder to generate the
output. The style extractor is made up of a projection layer,



Fig. 1: Architecture of EavaNet. The snow symbols in the audio encoder denote freezing the weights.

Fig. 2: t-SNE [18] plots of style embeddings from five subjects in
training data (left: emotion, right: speaker).

three Conv1D layers with layer normalization, LeakyReLU
activation functions, and a bidirectional gated recurrent unit
(GRU) [17]. The projection layer transforms the input data into
a feature vector. The Conv1D layers, with a channel size of 256
and kernel size of 4, along with a stride of 2 and padding size
of 1, extract features from the feature vector. Subsequently,
layer normalization is applied to normalize these features. The
GRU then processes the features to extract a 256-dimensional
style embedding.

e = STL(styleextractor(V
emotarget

spk∗,utt∗ )). (1)

In the 4-head attention layer of STL, the output of the style
extractor is multiplied by the style tokens Vstyle token and each
token’s score. The attention score is calculated by multiplying
the query Q from the output of the style extractor with the
transposed trainable parameter key KT , then dividing it by the
square root of the key’s dimension dk. Finally, the weighted
sum of style tokens for each head is concatenated to form the
style embedding.

Att(Q,K, Vstyle token) = softmax
(
QKT

√
dk

)
Vstyle token. (2)

To separate the style embeddings depending on the type
of emotion, we compute the cross-entropy LCE between the
style embedding and the emotion labels rather than using

Fig. 3: The score of 4-head attention in the style token layer. Each
color represents the index of each head, and each emotion has a
different distribution of style tokens.

contrastive learning technique in embedding space [19]. This
allows us to identify the different styles that are associated
with each emotion, as shown in Fig. 2. In the figure, style
embeddings that belong to the same emotion category become
closer to each other, forming independent clusters regardless of
the speaker variations. This means that the style of speech can
be used to identify the emotion expressed, even if the speaker’s
voice is different. The style embedding characteristics can be
determined by the score since the style tokens are shared for
all training data.

As shown in Fig. 3, the score of each emotion highlights
different style tokens. This means that the style embedding
can be represented by the combination of style tokens, as they
are tailored to their specific characteristics. In other words, the
style embedding can be created by combining different style
tokens, each of which represents a specific emotion. To use
the style embeddings during inference, we first compute the
centroid of the generated style embeddings in each emotion
cluster, then store them in a lookup table during training. Our
model directly retrieves the style embeddings from the pre-
trained lookup table during inference.
Decoder. The decoder is composed of GAU, BLSTM and



projection layers motivated by [20]. The style embedding
and speaker embedding espk ∈ R1×d are added to the hidden
representations of the Conv1D layers and they are passed to
the GAU.

X1:T = e⊕H1:T ⊕ espk, espk = Fθ(i),

H1:T = Conv1D(A1:2T),

A1:2T = Encaudio(S1:N),

(3)

where X ∈ RT×d denotes the input of GAU and ⊕ means
adding. H ∈ RT×d and A ∈ R2T×dA are hidden representa-
tions and audio encoder outputs, respectively. Fθ and i depict
fully connected layers and a speaker ID, respectively. The GAU
used in the generative model [21] has three residual blocks,
each consisting of two paths: a filter and a gate, with residual
connections. Each path has a single 1D convolution layer and
two activation functions (hyperbolic tangent and sigmoid). The
filter path estimates local features in adjacent frames based
on the receptive field size, and the gate path determines how
much to pass through. After the outputs of the two gates are
multiplied, they are passed through an output 1D convolution
layer and are added to the residual connections, which have
256 channel size with 1 kernel size. The convolution layers
have channel sizes of (256, 512) and kernel sizes of (5, 3, 5)
with padding sizes of (2, 1, 2).

zk = tanh(Wf,k ∗ xk + bf,k)⊗ σ(Wg,k ∗ xk + bg,k),

xk+1 = (Wo,k ∗ zk + bo,k)⊕ xk,
(4)

where tanh, σ, ∗ and ⊗ denote hyperbolic tangent, sigmoid,
convolution operator, and an element-wise multiplication op-
erator, respectively. The f , g and, o denote filter, gate, and
output layer, respectively. W∗,k and b∗,k are trainable weights
and the bias of the kth layer.

All of these processes are conducted concurrently. Since
the GAU uses only CNNs to capture local features, we also
incorporate two BLSTM layers with a channel size of 256
to capture temporal characteristics. Finally, the output of the
BLSTM layers is projected to the vertices:

V̂1:T = Pθ(BLSTM(Y1:T )), (5)

where Y1:T and V̂1:T are the outputs of GAU and predicted
vertices from fully connected layers Pθ, respectively.
Training criterion and details. We compute mean square
errors (MSEs) between the predicted vertices V̂1:T and the
target ones V1:T .

Lvert =
1

T

T∑
i=1

∥Vi − V̂i∥2, V j
i = V j

i −mj , (6)

where j represents subject id. The total training loss is:

Ltotal = Lvert + λCELCE, (7)

where the scale factor λCE is set to 0.001.
We trained EavaNet for 200 epochs on an NVIDIA GeForce

RTX 3090 GPU using the Adam optimizer. The initial learning
rate is set to 1e-4 and is reduced by half every 40 epochs.

TABLE II: Quantitative evaluation on BIWI-A.

Model
Vertex error ↓
(×10−5mm)

Lip vertex error ↓
(×10−4mm)

FDD ↓
(×10−5mm)

FaceFormer [2] 3.9876 7.5916 5.0914

CodeTalker [3] 4.7354 8.2971 3.6702
EavaNet 3.4603 6.3628 3.9958

TABLE III: A/B results of EavaNet and previous models.
Model Lip sync↑ Expression↑

EavaNet
vs GT 40.86 45.21
vs FaceFormer 51.73 66.23
vs CodeTalker 53.52 60.41

The mini-batch size is set to 1. For the reference models for
comparison, we adhere to their respective official codes for
training.

IV. EXPERIMENTS

A. Experiment setting
We use the BIWI dataset [4], which contains emotional

speech accompanied by dense dynamic 3D facial geometries.
The dataset consists of 14 subjects, each with 40 sentences,
for an average sequence length of 4.67 seconds. The 3D facial
meshes are captured at a rate of 25 frames per second, with
each mesh consisting of 23,370 vertices. We eliminate outlier
samples by following the BIWI guidelines; instances with zero
scores across all 15 emotion categories are considered outliers
that should be removed. The dataset is divided into three parts:
a training set with 146 sentences spoken by five speakers (F1,
F3, F4, F5, F7); a validation set with 18 sentences spoken by
the same five speakers; and two separate test sets, BIWI-A and
BIWI-B. BIWI-A has 19 sentences spoken by five subjects
who were previously seen, while BIWI-B has 30 sentences
spoken by nine subjects who were not seen before. We use
BIWI-A for objective evaluation, and BIWI-B for user studies
and ablation studies.

To stabilize the training, we removed the silence sections
before and after the main audio segments using the librosa
library, aligned the video accordingly, and normalized the
audio scale to -3dB. The audio samples were captured at a
rate of 16,000 samples per second.
B. Quantitative Evaluation

To measure the performance of our model, we use two
metrics: lip vertex error and the upper-face dynamics de-
viation (FDD), following the methodologies of FaceFormer
and CodeTalker. The lip vertex error measures the accuracy
of lip-syncing, while the FDD assesses the fidelity of facial
expressions. Both of these metrics measure the discrepancy
between the predicted and actual vertices. The lip vertex
error is a measure of the maximum distance between the
actual and predicted lip positions for each frame, averaged
over all frames. The FDD measures the difference in standard
deviation between the vertices of ground-truth and predicted
facial expressions for each frame, which are associated with
upper facial expressions. Furthermore, we compute the L2
error for all vertices in each frame and then average these



Fig. 4: Visual comparison of sampled 3D faces generated by different
models (top). 3D faces and their heatmaps animated by EavaNet with
neutral, interpolated and, emotional style embedding (bottom). We use
the e38 sentence in BIWI-B (angry emotion) in this sample.

values across all frames. These metrics are used to fully assess
the overall quality of the generated 3D avatars.

Table II presents the quantitative findings for BIWI-A. Our
model outperforms previous state-of-the-art models in both lip
accuracy and overall quality. This result highlights the fact that
our model can accurately generate 3D facial animations while
conveying distinct pronunciations. Our model also has a better
FDD score than FaceFormer, which indicates its superiority
in facial expression representations. While CodeTalker outper-
forms EavaNet in terms of FDD score, the overall quality of
its generated avatars is inferior to that of other models.

C. Qualitative Evaluation
Our model’s ability to create expressive 3D facial animation

with precise lip synchronization has been confirmed through
qualitative evaluation. A visual comparison of EavaNet and
competing models is presented in Fig. 4. To ensure a fair
comparison, we use the same randomly selected subject ID
as the conditional input for FaceFormer, CodeTalker, and our
proposed model. In both cases, the samples produced by
EavaNet express the emotion more clearly through dynamic
facial movements, while other samples do not, especially with
drooping eye tails and wrinkles between the brows when
expressing sadness. One interesting finding is that our model
expresses sadness and angry more strongly than the ground
truth (GT) in both BIWI-A and BIWI-B (the 2nd and 3rd rows
of Fig. 4). Unlike other models, EavaNet can successfully
convey emotions even when they cannot be discerned solely
from the prosody of the speech input because it uses style
embeddings effectively. We suggest that you zoom in and
examine the figure more closely.
D. User study

We conducted preference A/B tests with GT, FaceFormer,
and CodeTalker to evaluate the quality of the generated avatars
from a human perspective. Twenty-three people were asked to
choose samples with high lip-sync accuracy from the outputs
of two different models. In addition, participants were asked
to choose samples that effectively conveyed the emotions

TABLE IV: Results in terms of inference speed.
State FaceFormer CodeTalker EavaNet

RTF 0.1356 1.5684 0.0097
Ratio × 11.56 × 1 × 161.55

TABLE V: MOS (mean opinion score ) results with 95% confidence
intervals in terms of emotion manipulation.

State Neutral Interpolated Emotion

MOS 2.44±0.29 3.13±0.21 4.11±0.19

expressed in the audio input. We created avatars for unseen
subjects in BIWI-B by using five seen subjects’ IDs as con-
ditions, and then picked 30 samples from all the conditioned
IDs. Using this setup, we created 90 A/B pairs (30 samples ×
3 comparison models).

Table III demonstrates a considerable improvement in our
model’s emotional expression and lip synchronization accuracy
with audio. Our approach has been shown to be more accurate
in terms of lip synchronization and emotional expression than
state-of-the-art models, with a preference of over 50% and
60%, respectively. In particular, our model demonstrates a
66% preference in expressing emotions compared to avatars
generated by FaceFormer, and it outperforms CodeTalker,
which uses vector quantization (VQ) to address smoothing
issues, by 60%. Additionally, EavaNet performs similarly to
the ground truth (GT), with a preference of 45%. This implies
that by training the model on the five subjects with the richest
emotional expression from the 14 subjects in the BIWI dataset
(as mentioned in Section III-A), we can effectively overcome
limitations and create authentic facial expressions, even for
subjects with lower emotional expression.

E. Inference speed

When deploying the model in real-world applications, it is
essential to generate high-quality 3D facial animations with
human-like emotional expressions in a time-efficient manner.
To assess the generation speed of each model, we randomly
selected a sample from the test set and measured the generation
time using an NVIDIA GeForce RTX 3090 GPU. We calcu-
lated the average time required after conducting 100 synthesis
operations. The RTF (Real Time Factor) denotes the ratio of
the time taken to predict the positions of 3D vertices for a
4-seconds length sequence.

As detailed in Table IV, our proposed model demonstrates
the capability to generate 3D avatars at speeds 14 and 161
times faster than FaceFormer and CodeTalker, respectively.
FaceFormer and CodeTalker rely on autoregressive (AR) mod-
eling, wherein predictions of vertices are conditioned on pre-
vious predicted frames. Consequently, these models demand
a significant amount of time during inference due to the
sequential nature of their predictions. In contrast, EavaNet
adopts a non-AR structure that enhances inference speed by
enabling parallel generation of vertices. Although the model
incorporates BLSTM layers after GAUs, it processes data in
latent space sequentially, mitigating computational overhead.



F. Ablation study
Emotion intensity. Style embeddings are beneficial for

producing high-quality 3D avatars and controlling the intensity
of emotional expression. We use linear interpolation to blend
the style embedding between neutral and (happy, sadness,
anger) to control the intensity of the expression.

eemotion
α = αeemotion + (1− α)eneutral, (8)

where eemotion and eneutral are style embeddings extracted
from the trained lookup table (see Section III-B). We set
the ratio α to 0.3 to perform exemplary experiments. We
randomly selected 45 samples (15 samples × 3 expression
strength; neutral, weak emotion, and emotion) from BIWI-B by
conditioning the subject F4, and then asked 25 people to rate
the strength of emotional expression on a scale of 1 to 5. The
higher the score, the more intense the emotional expression. As
shown in Table V, the avatar generated using the interpolated
style embedding eemotion

α has a weaker emotional represen-
tation than those generated using the emotion style embed-
ding eemotion, but a stronger emotional representation than
those generated using the neutral style embedding eneutral.
Fig. 4 shows an example. The wrinkles between the brows
become more pronounced and the facial expression changes
as the emotion of anger intensifies, gradually strengthening
the emotional expression.

V. CONCLUSION

In this work, we presented EavaNet, a generative model
that creates 3D facial animations with emotional expression
given speech signals. EavaNet is non-autoregressive, and is
able to quickly predict 3D face vertices showing accurate
emotional facial expressions. To address limited training data,
we re-categorized BIWI dataset labels into four emotions.
Additionally, EavaNet estimates style embeddings and interpo-
lates between them enables fine-tuned control over emotional
expression strength. Our model outperforms previous state-of-
the-art models in terms of emotion expression and lip sync
accuracy in both subjective and objective evaluations.
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