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Abstract—Performing speaker verification (SV) at a distance
from the sound source is challenging because of the interference
of noise and reverberation. In such a situation, incorporating
phonetic information into speaker embeddings can help reduce
the adverse effects of noise and reverberation. Inspired by this
observation, we propose a Jointly optimized speaker-embedding
and phonetic-matching (Joseph) framework to exploit phonetic
content for far-field SV. The framework encourages the speaker
embeddings to preserve phonetic information by matching the
frame-based feature maps of a speaker embedding network with
wav2vec’s vectors. The intuition is that phonetic information can
preserve low-level acoustic dynamics with speaker information
and thus partly compensate for the degradation due to noise
and reverberation. Results show that the proposed framework
outperforms the standard speaker embedding on the VOiCES
Challenge 2019 evaluation set and the VoxCeleb1 test set. This
indicates that leveraging phonetic information under far-field
conditions is effective for learning robust speaker representations.

Index Terms—Far-field speaker verification, multi-task learn-
ing, phonetic content, wav2vec

I. INTRODUCTION

Speaker verification (SV) plays an important role in various
fields, such as biometric authentication, e-banking, and access
control. Traditional SV models rely on statistical models like
Gaussian Mixture Models (GMMs) [1] and i-vectors [2] to
achieve good performance. With the advance in deep learning,
deep neural networks, such as TDNNs [3], ResNets [4],
and ECAPA-TDNNs [5], have been prevailing for speaker
embedding. Notably, the ECAPA-TDNN has achieved state-
of-the-art performance on various datasets, demonstrating its
superiority in speaker verification tasks.

Conventional SV systems are usually trained on “clean”
utterances and perform well on near-field speech signals.
Under far-field conditions, however, due to uncontrollable
noise and reverberation, a severe mismatch occurs between
the near-field and far-field acoustics, and these systems suffer
greatly [6]. Developing an SV system that can address the
adverse conditions in the far field is essential.

Researchers attempted to address the far-field challenge
by modifying the system architecture, exploring adversarial
learning techniques, and leveraging advanced data augmen-
tation strategies. For instance, the author in [7] introduced

the channel-interdependence enhanced Res2Net (CE-Res2Net)
to aggregate speaker information from multi-scale frame-level
representations and achieved performance gains on VOiCES
Challenge 2019 data. The authors in [8] used a domain
separation network to disentangle and suppress the domain-
specific information related to far-field noise and reverberation.
In [9], a population-based searching strategy was proposed to
optimize the augmentation parameters and greatly boosted far-
field SV performance.

On the other hand, studies have shown that text-independent
SV systems can be enhanced by incorporating phonetic in-
formation into speaker representation learning. In [10], the
authors adopted a multi-task learning strategy by combining
a phone classifier with a speaker classifier for speaker embed-
ding and obtained superior performance. The authors of [11]
investigated the usefulness of phonetic information at the seg-
ment and frame levels. They concluded that although phonetic
content at the segment (embedding) level is detrimental to SV
performance, using phonetic information at the frame level
is beneficial. One possible explanation for the performance
improvement in [10], [11] is that shared spectral dynamics
exist at the lower (frame-level) layers, which are useful for
speech and speaker recognition. Enriching content information
at the frame-level layers also strengthens the information
essential for speaker discrimination.

The aforementioned studies only focus on the contribution
of phonetic information to near-field speaker verification tasks,
and they rely on phonetic labels when incorporating phonetic
information. However, obtaining phonetic labels for SV is
challenging because most speech-to-text systems can only
output word sequences instead of phone sequences, and the
phones are not time-aligned after converting from words to
phones.

Inspired by the above observations, we propose a framework
that can jointly train a model to perform phonetic matching and
speaker verification without any phonetic labels. The frame-
work comprises a phonetic matching component for phonetic
information extraction and a speaker identification component
to enforce the segment-level layers to produce speaker discrim-
inative vectors. We refer to the framework as Jointly optimized
speaker-embedding and phonetic-matching (Joseph). Unlike
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Fig. 1: Left: Framework of Jointly optimized speaker-embedding and phonetic-matching (Joseph) and Weighted Joseph. The
utterance-based speaker network in the speaker classification part comprises a pooling layer and a fully connected layer. Right:
The difference between Weighted Joseph and Joseph lies in the frame-based network. “⊗” represents multiplication and “⊕”
represents element-wise addition.

[10], [11], phonetic labels are not required in Joseph. Instead,
we use a pre-trained wav2vec 2.0 model to extract the phonetic
content in an unsupervised manner. This strategy greatly saves
the effort to transcribe the speech files in speaker recognition
corpora. The rationale behind Joseph is that although noise and
reverberation can blur speaker information in speech signals,
the phonetic information extracted from wav2vec 2.0 assists
in preserving the underlying acoustic dynamics shared by the
speaker identity. Therefore, the degradation due to the far-field
conditions can be compensated somewhat. As different frame-
level layers contain distinct speaker and phonetic information,
Joseph should be able to utilize the phonetic information from
different frame-level layers rather than solely relying on the
last layer. To address this issue, we propose Weighted Joseph,
which utilizes learnable weights to aggregate the outputs of
all frame-level layers as the input to the phonetic matching
component of Joseph. In this way, the model can autonomously
determine which frame-level layer’s information is more im-
portant. Our main contributions are as follows:

1) We proposed a phonetic-aware framework called Joseph,
which improves the robustness of far-field SV by exploit-
ing phonetic information.

2) We incorporated a pre-trained wav2vec 2.0 model (after
fine-tuning) in the phonetic matching part, eliminating
the need for manually transcribing speaker verification
datasets.

3) We improved the Joseph framework by introducing the
Weighted Joseph framework, which significantly boosts
the system’s performance.

The rest of the paper is organized as follows. Section II
introduces the wav2vec 2.0 and details the Joseph framework.
Section III presents the experimental settings, and Section
IV shows the results and analyses. We draw a conclusion in
Section V.

II. METHODOLOGY

This section introduces the Joseph framework and its two
components: phonetic matching and speaker classification.

A. Speech Recognition Model

In Fig. 1, we utilize a wav2vec 2.0 [12] network fine-tuned
by CTC loss [13] as the speech model. Wav2vec 2.0 is a self-
supervised learning framework that leverages a large amount
of unlabeled data to learn speech representations. It takes in a
waveform and produces context representations through a stack
of CNN layers and Transformer layers. Through contrastive
learning, the model is able to extract compact and meaningful
speech representations that can be used for downstream speech
tasks. Recently, pre-trained wav2vec 2.0 models have gained
popularity as a front-end feature extractor in various speech
applications.

B. Joseph Framework

As shown in Fig. 1, the phonetic matching part and the
speaker classification part share the frame-level layers. The
representations outputted from an intermediate frame-level
layer are fed into the phonetic matching part. We denote these
representations as X = {xt ∈ RD; t = 1, . . . , T}, where xt

is a D-dimensional vector at the t-th frame. For the speaker
classification part, the feature maps produced from the last
frame-level layer are processed by a pooling layer and a fully
connected (FC) layer to derive an utterance-level embedding e.
The AAMSoftmax [14] loss is employed as the loss function
(Lspeaker in Fig 1).

For the phonetic matching part, the waveform is fed into
the speech model and we obtain a sequence of T frames V =

{vt ∈ RD̃; t = 1, . . . , T}, where D̃ is the dimension of speech
vectors. A max-pooling layer is applied to X to ensure that the
resulting Z = {zt ∈ RD̃; t = 1, . . . , T} has the same length
as V . We compute the speech loss as the cosine similarity
between Z and V:

Lspeech = 1− 1

T

T∑
t=1

cos(zt,vt). (1)

Then, we average the Lspeech across the utterances in a mini-
batch. By making Z close to V , we enable the frame-level lay-
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ers of the speaker encoder to preserve useful phonetic informa-
tion. Because phonetic information contains speaker-dependent
acoustic dynamics, maintaining phonetic information at the
frame level will also preserve speaker information in the
embedding network. As will be demonstrated in Section IV-A,
this speaker information preservation helps compensate for the
performance degradation caused by far-field environments.

The total loss is defined as follows:

Ltotal = Lspeaker + λLspeech, (2)

where Lspeaker is the AAMSoftmax loss defined in [14] and λ
is a hyperparameter that controls the contribution of phonetic
information. During training, we freeze the parameters of the
speech model.

C. Weighted-Joseph Framework

As shown in Fig. 1, the Joseph framework feeds a specific
frame level layer’s output into the phonetic matching part.
However, each frame-level layer contains different phonetic
and speaker information. This means that Joseph does not
consider the information from other frame-level layers during
the phonetic matching process. To address this issue, we have
improved the Joseph framework and introduced the Weighted-
Joseph (W-Joseph for short) framework.

As shown on the right side in Fig. 1, W-Joseph multiplies the
output Fi = {fi,1, . . . , fi,T } of each frame-level layer with the
corresponding learnable weights wi, where i = {1, . . . , 5} rep-
resents the index of the frame-level layers. To avoid dimension
mismatch during element-wise addition, the frame-level output
of each layer undergoes a one-dimensional convolution to
unify the dimensions. After element-wise addition, we obtain
X , which is then fed into the phonetic matching part. The
following equation is defined:

X =

5∑
i=1

wi ×Fi. (3)

In this way, Weighted Joseph considers the information
from each frame-level layer in the phonetic matching part,
and through a set of learnable weights wi, the model can
autonomously determine the significance of each frame-level
layer’s information.

III. EXPERIMENTAL SETUP

A. Datasets and Data Preparation

The training data comprise the VoxCeleb1 development set
and the VoxCeleb2 development set [15] [16], which consist
of a total of 7,205 speakers. Voice activity detection (VAD)
was not used. We followed the data augmentation strategy in
Kaldi’s recipes [17]. We added noise, music, and babble to
the training data using MUSAN [18] and created reverberated
speech data based on RIR [19]. For evaluation, we used the
VOiCES Challenge 2019 evaluation (VOiCES19-eval) dataset
[20]. The Voxceleb1 test Original (Vox-O), which comprises
40 speakers, was also used as the evaluation set.

B. Network Training

We used the standard x-vector [21] and ECAPA-TDNN
[5] as our backbones. The channel size of ECAPA-TDNN
is 512. The dimension of speaker embeddings is 192 for
ECAPA-TDNN and 512 for x-vector, respectively. For the
speech model, we used the wav2vec 2.0 model fine-tuned on
the LibriSpeech dataset. The output of the wav2vec 2.0 was
obtained from the projection layer of the fine-tuned model. For
the unweighted Joseph, the frame-level representation from
the second lowest-level TDNN of the x-vector network and
the lowest-level ECAPA-TDNN were used as the input to the
phonetic matching part (see the top-right of Fig. 1). For the
Weighted-Joseph, the feature maps outputted by the five frame-
level layers of these networks are linearly combined, as shown
in Eq. 3 and the bottom-right of Fig. 1.

For ECAPA-TDNN, we extracted 80-dimensional filter-bank
(Fbank) features from 16kHz audio signals using a 25ms
window with a 10ms frameshift. For the x-vector network,
we extracted 40-dimensional Fbank features. Each training
segment in the mini-batch has a duration of 2 seconds. The
batch size was set to 100 for ECAPA-TDNN and 50 for
x-vector, respectively. We used an Adam optimizer with an
initial learning rate of 0.001 and employed a step learning
rate scheduler. The total number of epochs is 80. For the
AAMSoftmax loss function, the margin is 0.2 and the scale
is 30.

C. Performance Evaluation

We used a cosine scoring backend in all experiments. When
performing evaluation on the Vox-O test set, we followed
the setting in [5] to apply the AS-norm [22] on the scores.
The performance metrics include equal error rate (EER) and
minimum detection cost function (minDCF) with Ptarget =
0.01.

IV. RESULTS AND ANALYSES

We report the performance of Joseph and W-Joseph in this
section. The comparison with conventional speaker embed-
dings is detailed.

A. Main Results

Table I presents the results of the baselines, Joseph, and
W-Joseph on the VOiCES19-eval, Vox-O (clean), and Vox-O
(noise) datasets. The baselines use the x-vector network or
ECAPA-TDNN without phonetic matching. From Table I, it is
evident that Joseph and W-Joseph outperform the baselines for
both x-vector and ECAPA-TDNN on all datasets. In particular,
on VOiCES19-eval, for ECAPA-TDNN, W-Joseph reduces the
EER by 14.2% and minDCF by 18.69%. For x-vector, W-
Joseph achieves a reduction of 22.99% and 33.44% on EER
and minDCF, respectively. These reductions demonstrate the
effectiveness of Joseph and W-Joseph in leveraging phonetic
information for far-field SV.

To verify that Joseph and W-Joseph can partially compensate
for the performance degradation due to adverse conditions
under the far-field scenarios, we investigated their performance
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TABLE I: Comparison of our methods (Joseph and W-Joseph) with the baselines (without phonetic matching) on the clean and
noisy Vox-O datasets and the VOiCES19-eval sets.

Speaker Embedding VOiCES19-eval Vox-O (clean) Vox-O (noise)
Row System Network EER (%) minDCF EER (%) minDCF EER (%) minDCF

1 Baseline 1
x-vector

7.81 0.598 2.23 0.219 5.82 0.470
2 Joseph (Proposed) 6.43 0.433 2.16 0.205 5.14 0.446
3 W-Joseph (Proposed) 6.01 0.398 2.01 0.174 4.88 0.173

4 Baseline 2
ECAPA-TDNN

5.79 0.428 1.19 0.165 3.95 0.380
5 Joseph (Proposed) 5.13 0.374 1.10 0.136 3.31 0.311
6 W-Joseph (Proposed) 4.97 0.349 1.05 0.143 3.05 0.252

Fig. 2: The impact of different noise types in MUSAN and signal-to-noise (SNR) on the baseline, Joseph, and W-Joseph. The
results were based on Vox-O (noise). The speaker embedding network is ECAPA-TDNN.

TABLE II: Comparison of our method (Joseph and W-Joseph)
with other methods on the VOiCES19-eval dataset. The best
results for each model are highlighted in bold.

System Speaker Embedding EER (%) minDCF

[7] CE-ResNet 5.72 0.423
[23] x-vector 8.55 0.552
[24] x-vector 6.85 0.536
[8] x-vector 6.51 0.6309
[25] x-vector 6.42 0.501
[26] ECAPA-TDNN 5.90

Joseph (Proposed) x-vector 6.43 0.433
W-Joseph (Proposed) x-vector 6.01 0.398

Joseph (Proposed) ECAPA-TDNN 5.13 0.374
W-Joseph (Proposed) ECAPA-TDNN 4.97 0.349

on the clean and noisy Vox-O datasets. The “clean” set refers
to the standard Vox-O test data, and the noisy Vox-O set
was created by randomly adding noise and reverberation to
the standard (clean) Vox-O data, following the data augmen-
tation strategy in Section III-B. From Table I, we observe
that Joseph and W-Joseph outperform the baselines on both
clean and noisy Vox-O datasets. On the clean Vox-O, our
methods achieve a slight improvement over the baselines.
This improvement confirms the conclusion in [10], [11] that
using phonetic content can benefit text-independent SV. On

TABLE III: Impact of preserving phonetic information at
different frame-level layers of an ECAPA-TDNN on Joseph.

Frame-level Layer Network Block EER (%) minDCF

Layer 4 TDNN 5.28 0.392
Layer 3 SE-Res2Block 5.54 0.379
Layer 2 SE-Res2Block 5.33 0.385
Layer 1 SE-Res2Block 5.27 0.390
Layer 0 TDNN 5.13 0.374

TABLE IV: Impact of preserving phonetic information at
different frame-level layers of an x-vector network on Joseph.

Frame-level Layer Network Block EER (%) minDCF

Layer 4 TDNN 6.85 0.483
Layer 3 TDNN 6.74 0.477
Layer 2 TDNN 6.54 0.485
Layer 1 TDNN 6.43 0.433
Layer 0 TDNN 6.44 0.459

the noisy Vox-O dataset, all systems exhibit substantial per-
formance degradation compared with the clean counterpart.
Nevertheless, phonetic-aware systems (Joseph and W-Joseph)
achieve remarkably greater performance gain over the base-
line systems. This observation verifies our motivation that
incorporating phonetic information into the speaker embedding
system can improve SV performance, particularly in far-field
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TABLE V: Impact of λ (in eq. 2) on the Joseph framework.
The best results are highlighted in bold.

Speaker embedding λ EER (%) minDCF

ECAPA-TDNN

0.001 5.69 0.410
0.004 5.67 0.418
0.01 5.59 0.401
0.1 5.13 0.374
0.4 5.85 0.448

TABLE VI: Impact of different speech models on the W-
Joseph framework. The results based on the VOiCEs19-eval
set.

Speaker embedding Speech Model EER (%) minDCF

ECAPA-TDNN
Wav2vec2 4.97 0.349

Hubert 5.04 0.343
WavLM 4.68 0.321

environments with noise and reverberation.
To further demonstrate the effectiveness of our methods,

we compared our method with several recent approaches on
the VOiCES19-eval dataset. Table II shows the results. We
observed that both Joseph and W-Joseph outperform other
methods. W-Joseph achieves better performance compared to
Joseph because it focuses on the phonetic information at every
frame-level layer and allows the model to autonomously de-
termine which layer’s phonetic information is more important
through learnable weights.

We have also conducted additional experiments on the
Vox-O test set to evaluate the effects of three distinct noise
categories in MUSAN: speech, noise, and music, at different
SNR levels. Fig. 2 shows the results. From Fig. 2, it is
evident that the phonetic aware systems demonstrate superior
performance compared to the baseline across different types of
noise and SNR levels. Furthermore, When the SNR decreases,
the Joseph and W-Joseph system exhibits a relatively smaller
decline in performance. This finding indicates the robustness of
our methods to noise and reverberation, highlighting its ability
to maintain stable performance even in challenging acoustic
environments.

B. Ablation Study

We argue that the lower frame-level features contain richer
shared spectral dynamic information related to speech and
speakers. To support this argument, we conducted ablation
studies to show the impact of preserving phonetic information
at different frame-level layers of Joseph. Table III and Table IV
show the results. In Table III, Layer 0 and Layer 4 correspond
to the initial and final TDNN layers of the ECAPA-TDNN,
respectively. The remaining three layers correspond to the three
SE-Res2Blocks. In Table IV, Layer 0 to Layer 4 correspond
to the five TDNN layers of the x-vector network.

Table III shows that the performance improvement of Joseph
becomes more prominent when we feed features from lower
layers into the phonetic matching part. Specifically, when we
present features from the initial TDNN layer (Layer 0) to
the phonetic matching part, we obtained the best result with
an EER of 5.13%. However, performance gradually drops
when we preserve phonetic information at the upper layers
(with more abstract representations). This result is reasonable
because the lower-level feature maps contain more speaker and
content information that is entangled together. By contrast, the
representations at the upper layers are more speaker-specific.
Therefore, it is preferable to exploit phonetic information at
lower layers. In Table IV, feeding the output of the bottom
frame-level layers into the phonetic matching part yields better
results. However, it is not the lowest layer. Our analysis
suggests that the TDNN layers do not possess the same level of
ability as the SE-Res2Blocks to filter out speaker-independent
information. This is also the reason for using the bottom layer
for phonetic information extraction in Section IV-B.

We also investigated the effect of λ in Eq. 2 on Joseph.
The results are shown in Table V. We observe that the best
performance is achieved when λ = 0.1, with an EER of
5.13%. As λ increases, the performance of Joseph gradually
deteriorates. When λ was set to 0.4, the EER of the Joseph
system is higher than that of Baseline 2 in Table I. The above
observations suggest that excessive phonetic information can
cause the speaker embedding network to focus on the content
details and pay less attention to the speaker information,
leading to performance degradation.

Table VI demonstrates the impact of different speech models
on W-Joseph. It shows that W-Joseph performs the best when
the speech model is WavLM.

V. CONCLUSIONS

In this paper, we propose two phonetic aware systems
(Joseph and W-Joseph) to improve far-field SV performance.
By using a pre-trained speech recognition model, we incor-
porate the phonetic information into the conventional speaker
encoders. Also, we eliminate the reliance on transcriptions for
the speech recognition task. Experimental results demonstrated
that leveraging phonetic information can improve the perfor-
mance of far-field speaker verification. In the future, we plan
to replace the speech model with models suitable for other
languages to test their performance on a wider variety of far-
field datasets in different languages.
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