
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Accelerated Real-Time Local Maxima Detection in
Video Streams Using FPGA Technology

Anindhita Nayazirly Sukarno∗, Yahwista Salomo†, Trio Adiono, Infall Syafalni,
Nana Sutisna, and Rahmat Mulyawan
∗ Institut Teknologi Bandung, Indonesia

E-mail: zirlysukarno@gmail.com
† Institut Teknologi Bandung, Indonesia

E-mail: yahwistasalomo@gmail.com

Abstract—In this paper, we present a successful implementation
of a local maxima filter on a Zybo Z7-20 and PYNQ Z1 FPGA
using their two HDMI ports in real-time. The proposed system
uses the HDMI ports to capture video frames with a resolution
of 640x480 pixels. The local maxima filter is then applied to the
captured frames in real-time, allowing for the detection of peaks
in the image data. The filter uses a sliding window approach
to determine the local maxima, and a threshold value is set to
identify and retain only the most significant peaks in the image.
The system was implemented using SystemVerilog Hardware
Description Language (HDL). The system was developed in the
Xilinx Vivado design suite and the results show that the proposed
system is able to process video frames at a rate of 60 frames
per second with high accuracy and low latency. The proposed
implementation using SystemVerilog presents a more efficient
and flexible solution for image processing applications on FPGA,
making it a promising approach for real-time image processing.

I. INTRODUCTION

Image processing has become an integral part of modern
technological systems, with applications ranging from medical
diagnostics to autonomous vehicles [1]. Real-time processing
of high-resolution video streams poses significant challenges,
particularly in resource-constrained environments [2].

The identification of local maxima in image frames is a fun-
damental operation in many computer vision tasks, including
feature detection and segmentation [3]. However, performing
this operation in real-time on high-resolution video streams
(e.g., 640x480 at 60 fps) requires substantial computational
resources [4].

Traditional software-based approaches often struggle to
meet the stringent timing requirements of real-time video pro-
cessing [5]. While GPU-accelerated solutions offer improved
performance, they typically consume significant power and
may not be suitable for embedded systems [6].

There is a need for a hardware-accelerated solution that can
perform real-time local maxima detection on high-resolution
video streams while maintaining low latency and power ef-
ficiency [7]. Existing FPGA-based solutions often lack the
necessary throughput or flexibility to handle varying image
complexities [8].

This paper presents a novel FPGA-based system for real-
time local maxima detection in video streams. Our key contri-

butions include:
• A highly parallelized architecture capable of processing

640x480 pixel frames at 60 fps [9].
• An adaptive processing algorithm that dynamically ad-

justs to image complexity [10].
• An efficient memory management scheme optimized for

row-wise image processing [11].
• A pipelined design that maximizes hardware utilization

and minimizes latency [12].
• Comprehensive performance analysis and comparison

with existing solutions [13].
Our proposed system demonstrates significant improvements

in processing speed and efficiency, paving the way for
advanced real-time image processing in resource-constrained
environments [14].

II. LOCAL MAXIMA ALGORITHM

The process of identifying 3x3 local maxima in an image
involves a siterative procedure that examines each pixel in
relation to its surrounding neighbors. This algorithm, which
shares similarities with techniques described by Gonzalez and
Woods [1] in their seminal work on digital image processing,
can be delineated as follows:

• Pixel Iteration: The algorithm systematically traverses
each pixel within the image matrix, constructing a 3x3
window centered on the current pixel under evaluation.
This approach is reminiscent of convolution operations
used in various image processing tasks [3].

• Comparative Analysis of Neighboring Pixels: For each
target pixel, a rigorous comparison is conducted against
its eight adjacent pixels within the defined 3x3 window.
A pixel is designated as a local maximum if and only if
its value surpasses those of all its neighbors. In scenarios
where the target pixel’s value is equivalent to one or more
of its neighbors, a more nuanced approach is adopted: the
target pixel’s status as a local maximum is determined by
the output status of its neighboring pixels, introducing a
level of contextual decision-making [15].



• Image Analysis: The algorithm rigapplies this evaluation
process to every pixel within the image bounds, ensuring a
thorough analysis of the entire visual field. This approach
is critical for maintaining the integrity of the local maxima
detection across the image [10].

• Output Generation and Representation: The culmination
of this process yields a set of coordinates corresponding
to all identified local maxima. This output can be repre-
sented in various forms, such as a binary image or a list of
coordinate pairs, depending on the specific requirements
of subsequent processing stages [6].

Fig. 1. Schematic representation of the local maxima algorithm (single
iteration)

Fig. 10 elucidates the intricate timing management within
the process block. The counter initiates its sequence upon
the deactivation of the reset signal. The write address and
read address signals are strategically delayed in relation to
the counter, implementing a form of pipeline processing to
optimize throughput. In this context, the notation ’d’ denotes
raw data input, ’o’ represents the intermediate output values
awaiting processing, and ’n’ signifies the resultant values
destined for storage in bram out curr.

A. Mathematical Representation of the algorithm

Below is the iterative algorithm for local maxima detection.
We can represent this algorithm mathematically as follows:
Let I be the input image of size M ×N , and O be the output
image of the same size. Initialize O with all elements set to
1:

Oi,j = 1 ∀i ∈ [1,M ], j ∈ [1, N ] (1)

Define the neighborhood N (i, j) of pixel (i, j) as:

N (i, j) = (i′, j′) : |i− i′| ≤ 1, |j − j′| ≤ 1, (i′, j′) ̸= (i, j)
(2)

The algorithm then iteratively updates O until convergence:
For each pixel (i, j):

Find the maximum value in the neighborhood:

max
local

= max
(i′,j′)∈N (i,j)

Ii′,j′ (3)

If Ii,j < maxlocal:
Oi,j = 0 (4)

If Ii,j = maxlocal:

Oi,j = min
(i′,j′)∈N (i,j),Ii′,j′=Ii,j

Oi′,j′ (5)

The algorithm continues until O no longer changes between
iterations.

III. PROPOSED DESIGN

A. System Architecture and Design

1) Image Processing Architecture: Both the input and out-
put frames adhere to a 640x480 pixel resolution with a 24 bits
per pixel (bpp) color depth, consistent with standard VGA
specifications [4]. However, the system introduces an inter-
mediate step where the received frame undergoes grayscale
conversion to 6 bpp. This reduction in color depth not only
optimizes memory usage but also simplifies subsequent pro-
cessing steps, a common technique in image pre-processing
[5]. Following the local maxima computation, the output is
remapped to the full 24 bpp color space for transmission,
ensuring compatibility with standard display devices. The
system’s memory architecture is built around three specialized
block RAMs, each serving a distinct purpose in the processing
pipeline: Input Array: Stores the incoming frame data from the
DVI decoder. Output Array: Houses the intermediate results
of the local maxima algorithm. Transmission Buffer: Contains
a duplicate of the final output array, ready for transmission.
This tripartite memory structure facilitates efficient data flow
and minimizes latency, a crucial factor in real-time image
processing systems [5].

2) Processing Unit: The processing flow incorporates a
conditional branching mechanism: upon completion of the
looping process, the final processed data is committed to
a designated BRAM for subsequent transmission. However,
if the process remains incomplete, the intermediate output
is written to a buffer RAM and reprocessed. This iterative
approach ensures the algorithm’s convergence, a critical aspect
in handling complex image structures [1]. The loop count
increments with each iteration, with data read out sequentially
until the process concludes. As illustrated in Fig. 3, each
loop cycle necessitates (BRAM Depth + 6) clock cycles to
conclusively verify the finished signal, a design choice that
balances processing thoroughness with system latency [2].

Fig. 4 provides an in-depth view of the processor’s archi-
tectural scheme. The design incorporates sophisticated shift

2



Fig. 2. Flowchart depicting the data processing scheme

Fig. 3. Detailed block diagram of the advanced processor architecture

registers: at system initialization, out buf 0 and out buf 1 are
preset to one, while data buf 0 and data buf 1 are initialized
to zero. This initialization strategy ensures proper boundary
handling, a crucial aspect in image processing algorithms
[15]. In each clock cycle, the data in the shifters undergoes
an upward shift. The local maxima combinational algorithm
receives input from both the out buf and data buf shifters, with
results subsequently buffered in the out bram curr memory. A
notable feature of each of the 640 local maxima combinational
blocks is the inclusion of a specialized output port. This

port is designed to detect variations from the previous value,
triggering a reprocessing of the frame if changes are detected.

Fig. 5 offers a detailed view of the combinational logic
within each local maxima processing block. Each module is
designed to process 9 bits of image data from the BRAM
alongside 9 bits of prior output data. The module then de-
termines the output value, denoted as value o. The ’changed’
signal plays a crucial role in the system’s adaptive behavior,
determining whether additional processing iterations are nec-
essary.

3) DVI Receiver: The DVI receiver subsystem is respon-
sible for capturing and preprocessing the incoming video
stream. Fig. 6 illustrates its complex architecture. The receiver
integrates several key components:

4) DVI Transmitter: The DVI transmitter subsystem, de-
picted in Fig. 7, is responsible for converting the processed
image data back into a format suitable for DVI transmission.

The DVI transmitter operates across multiple clock domains
to meet the stringent timing requirements of the DVI standard:

A 25 MHz clock serves as the pixel clock, facilitating the
output of 640x480 pixels at 60 frames per second, adhering to
standard VGA timing specifications [4].

B. Performance Considerations and System Optimization

1) Pipelining and Parallelism: The system leverages both
pipelining and parallelism to achieve high throughput. The
640 parallel ”Local Maxima” combinational blocks represent a
form of spatial parallelism, allowing the system to process an
entire row of pixels simultaneously. This approach significantly
reduces the time required to process each frame [12].

2) Memory Management: The use of three separate block
RAMs (input array, output array, and transmission buffer) is
a key feature that enables efficient data management. This
approach minimizes memory conflicts and allows for simul-
taneous read and write operations, a technique that Ienne
and Leupers [8] highlight as crucial for high-performance
embedded systems. The row-based memory organization, with
a depth of 480 and varying widths, is optimized for the
specific requirements of image processing. This design choice
facilitates burst reads and writes, reducing memory access
latency and improving overall system performance [11].

3) Adaptive Processing: The inclusion of a ’changed’ signal
in the local maxima blocks, triggering reprocessing when nec-
essary, represents an adaptive approach to image processing.
This feature ensures that the system can handle varying levels
of image complexity, dynamically adjusting its processing to
maintain output quality. Such adaptive techniques are increas-
ingly important in real-world image processing applications,
as noted by Bovik [5].

IV. HARDWARE IMPLEMENTATION

As can be seen in Fig. 8 the system was implemented on
Pynq Z1 (Digilent). The DVI source used for testing was
Raspberry Pi 4 (Adafruit). The Raspberry Pi was used to play
videos and stream camera. The DVI sink used for testing was

3



Fig. 4. Complete block diagram of the processor’s internal structure

Fig. 5. Detailed combinational logic diagram of the local maxima processing
unit

a generic display monitor. The Raspberry Pi unfiltered display
was also mirrored to another display monitor for comparison.
Fig. 9 shows a display of the two monitors. Video of the demo
can be accessed at https://youtu.be/rrs4vBUoiV0.

Fig. 10 shows the expected behaviour of a single frame
processed once in the loop. Note, Xilinx’s bram requires two
clock cycle to be registered.

Fig. 6. Detailed block diagram of the advanced DVI receiver subsystem

Fig. 7. Comprehensive block diagram of the advanced DVI transmitter
subsystem

V. RESULTS AND DISCUSSION

A. Latency

The overall latency of the system is fixed as the time
distance between two frames which are 16.67 milliseconds.
The operating frequency of the datapath used is 25Mhz, which
in its worst case scenario would require

Latency = 40ns ∗ (BITWIDTH) ∗ (BITDEPTH + 6)

or 12.4416 milliseconds to finish an operation.

4

https://youtu.be/rrs4vBUoiV0


Fig. 8. Test setup

Fig. 9. Example of system input (top picture) and output (bottom picture)

TABLE I
RESOURCE UTILIZATION

Resource Utilization
LUT 30581
LUTRAM 785
FF 24772
BRAM 88.50
IO 18
BUFG 6
MMCM 2

Note: LUT: Look-Up Table; FF: Flip-Flop;
BRAM: Block RAM; IO: Input/Output; BUFG: Global Clock Buffer;
MMCM: Mixed-Mode Clock Manager

Strictly speaking of the datapath delay path, ignoring other
peripheral such as BRAM, ILA, or VIO, the critical path of
the datapath of local maxima with 640 width, 480 depth, and
6 data width is 10.632ns. Which means the maximum internal
operating frequency that can be achieved is around 94Mhz.
with the worst possible scenario, could finish the operation in
3.3069 milliseconds and process 300 frames per second.

B. Scalability

The local maxima processing block are designed with scal-
ability in mind, the relating hdl codes uses three parameter
as its inputs, which are DATA WIDTH to specify how
many parallel data you want to be processed each clock,
DATA DEPTH to specify how many clock cycles per loop
you want, and BIT WIDTH to specify the number of bits
used as the comparator.

C. Comparison of Equivalent Implementations

To contextualize the performance of our FPGA-based local
maxima detection system, it’s valuable to compare it with
equivalent implementations on different platforms. This com-
parison highlights the advantages and trade-offs of various
approaches.

1) CPU-based Implementation: Traditional CPU-based im-
plementations, such as those using MATLAB or OpenCV, offer
flexibility but often struggle with real-time performance for
high-resolution video streams. For instance, Neubeck and Van
Gool [16] reported processing times of 13.5 ms for a 512x512
image using an optimized algorithm on a 2.8 GHz Pentium 4.
While this approaches real-time performance, it doesn’t match
our FPGA implementation’s capability to process 640x480
frames at 60 fps (16.67 ms per frame).

VI. CONCLUSION AND FUTURE WORK/

The proposed system represents an approach to real-time
local maxima detection in video streams. By leveraging
advanced FPGA capabilities, including parallel processing,
pipelined architectures, and efficient memory management,
the system achieves high-performance image processing while
maintaining the flexibility necessary for future enhancements.
The design’s modular architecture, with clearly defined input,
processing, and output stages, provides a solid foundation for
future research and development. As the field of real-time
image processing continues to evolve, systems like this will
play an increasingly important role in applications ranging
from computer vision and robotics to medical imaging and
autonomous vehicles.

Concluding, this paper has presented a successful design
implementation on the Zybo Z7-20 and PYNQ Z1 using the
HDMI output of Raspberry Pi. The proposed local maxima
filter is a parallel 640 data blocks with a 10.632ns critical path,
and is capable of much higher throughput than is currently
achieved. Further works may include using it as a red blood
cell counter or other image processing applications that require
local maxima. With these improvements, the proposed design

5



Fig. 10. Local maxima processor timing diagram for one loop

could provide a platform for more complex image processing
tasks and applications.

While our current implementation demonstrates promising
results in controlled environments using a Raspberry Pi as the
video source, we acknowledge the need for more extensive
testing in real-world conditions. Future work will focus on
evaluating the system’s performance across a wider range
of scenarios, including varying lighting conditions, dynamic
scenes, and different video resolutions. Additionally, we plan
to conduct rigorous tests on the system’s robustness in handling
noisy or degraded video streams. This will involve introducing
artificial noise, compression artifacts, and other forms of signal
degradation to assess the algorithm’s resilience. We also aim
to explore adaptive thresholding techniques to enhance the
system’s ability to maintain accurate local maxima detection in
suboptimal video conditions. These investigations will provide
valuable insights into the system’s applicability in diverse real-
world applications, such as surveillance, autonomous vehicles,
and medical imaging, where video quality can vary signifi-
cantly.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital image pro-
cessing. Pearson, 2018.

[2] N. Kehtarnavaz, Real-Time Digital Signal Processing:
Based on the TMS320C6000. Newnes, 2015.

[3] R. Szeliski, Computer vision: algorithms and applica-
tions. Springer Science & Business Media, 2010.

[4] K. Jack, Video demystified: a handbook for the digital
engineer. Newnes, 2007.

[5] A. C. Bovik, Handbook of Image and Video Processing,
2nd. Academic Press, 2010.

[6] G. Bradski and A. Kaehler, Learning OpenCV: Com-
puter vision with the OpenCV library. O’Reilly Media,
Inc., 2008.

[7] D. G. Bailey, Design for embedded image processing
on FPGAs. John Wiley & Sons, 2011.

[8] P. Ienne and R. Leupers, Customizable Embedded Pro-
cessors: Design Technologies and Applications. Morgan
Kaufmann, 2006.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, et al., “The
landscape of parallel computing research: A view
from berkeley,” Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley,
2006.

[10] M. Sonka, V. Hlavac, and R. Boyle, Image processing,
analysis, and machine vision. Cengage Learning, 2014.

[11] S. Hauck and A. DeHon, Reconfigurable Computing:
The Theory and Practice of FPGA-Based Computation.
Morgan Kaufmann, 2007.

[12] J. L. Hennessy and D. A. Patterson, Computer Architec-
ture: A Quantitative Approach, 6th. Morgan Kaufmann,
2019.

[13] L. Wanhammar, DSP Integrated Circuits. Academic
Press, 1999.

[14] P. Pirsch, Architectures for digital signal processing.
John Wiley & Sons, 1995.

[15] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision.
McGraw-Hill New York, 1995.

[16] A. Neubeck and L. Van Gool, “Efficient non-maximum
suppression,” in 18th International Conference on
Pattern Recognition (ICPR’06), IEEE, vol. 3, 2006,
pp. 850–855.

6


	Introduction
	Local Maxima Algorithm
	Mathematical Representation of the algorithm

	Proposed Design
	System Architecture and Design
	Image Processing Architecture
	Processing Unit
	DVI Receiver
	DVI Transmitter

	Performance Considerations and System Optimization
	Pipelining and Parallelism
	Memory Management
	Adaptive Processing


	Hardware Implementation
	Results and Discussion
	Latency
	Scalability
	Comparison of Equivalent Implementations
	CPU-based Implementation


	Conclusion and Future Work/

