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Abstract—Decoding speech envelope from electroencephalog-
raphy (EEG) signals has been demonstrated to be useful for
assessing speech intelligibility and boosting potential applications
in neuroscience research as well as clinical diagnosis, which is also
the focus of the ICASSP Auditory EEG 2023 Challenge. In order
to further improve speech envelope decoding performance, this
study proposes an end-to-end architecture based on multi-head
attention mechanism called Context-FFT. Besides the transformer
architecture, we also utilize a context layer to extract information
and refine outputs based on given inputs. Notably, we decompose
raw speech envelopes into envelopes in 12 frequency bands to
model the relationship between 64-channel EEG signals and
speech envelopes more precisely. Experiment results show that
the proposed model achieves an average Pearson correlation
value of 0.2148±0.1004 on held-out stories, outperforming the
linear baseline by 51.65% and the VLAAI baseline by 23.17%,
and 0.0701±0.0428 on held-out subjects. In terms of the final
metric defined by the challenge, we obtain a final score of 0.1639,
outperforming all submitted models of the ICASSP Auditory
EEG 2023 Challenge. In the end, we explore the contributions of
different brain regions to the process of continuous speech.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive neuroimag-
ing technology that captures potential differences generated by
electrical activities of the brain. Neurons exchange information
between each other through synaptic connections in the form
of electrical currents. When evoked, postsynaptic potentials
generated by synchronized activities of a large number of
neurons summate in the cortex and extend to the surface of the
scalp, where they are recorded as EEG signals using a certain
number of electrodes [1]. Due to its non-invasive and safe
characteristics, EEG is widely used in fundamental research
as well as clinical diagnosis [2]. EEG also has potential
applications in smart hearing aids as researchers have found
out that auditory attention can be decoded from EEG, which
can improve outcomes of EEG-based smart hearing aids by
determining the focus of a user’s attention especially in noisy
conditions [3].

To help understand how the brain processes continuous
speech, recent studies have focused on neural tracking of
speech features in EEG [4–7], which often refers to the
time-locking effects of EEG to speech resources in a single-

speaker scenario. One common paradigm to quantify the neural
tracking of EEG is to reconstruct speech envelopes from EEG
and calculate the similarity between the reconstructed envelope
and the original envelope as the evaluation metric, which is
also the focus of the ICASSP Auditory EEG 2023 Challenge
[8] that calls for building the best model to relate speech
to EEG. Linear models are commonly applied to reconstruct
speech envelopes, but their reconstruction scores are low,
ranging from 0.1 to 0.2 for subject-specific linear decoders
[6, 9–12]. The limitation of linear models lies in assuming a
linear relationship between speech and highly non-linear EEG
[1].

Inspired by the success of deep learning architectures [13]
in processing complex data such as text and audio signals
[2], an increasing number of studies have been using deep
learning models to relate speech to EEG. Accou et al. have
proposed VLAAI, short for the Very Large Augmented Au-
ditory Inference network, which stacks multiple convolutional
blocks to enhance the model’s non-linearity [6]. VLAAI has
set the state-of-art performance by yielding an increase over
the linear model by 52% and been chosen as the baseline of
the challenge [8]. Notably, VLAAI utilizes an output context
layer to take the output context into account, which contributes
a 10% relative increase to the model performance, indicating
that the context layer is capable to extract useful information
from previous outputs. Transformer based on the multi-head
attention mechanism is also widely used due to its significant
success in fields such as natural language processing [14].
For instance, Yang et al. have proposed FastSpeech based
on feed-forward Transformer (FFT) architectures to generate
speech from text fast and robustly [15]. Drawing on its strong
capability for fitting speech features, Piao et al. have proposed
the HappyQuokka model consisting of FFT blocks and won
the first place in the challenge [16], which indicates that in-
corporating the multi-head attention mechanism can effectively
capture the dynamic variation characteristics of EEG signals.
This motivates the present work to utilize the FFT architecture
as well as the context layer to learn and fuse useful feature
representations.

Besides model architectures, recent studies have also in-



corporated inherent characteristics of the auditory system to
help model the complex relationship between EEG signals and
speech stimuli. Thornton et al. have combined two decoders
which exploit different EEG responses to speech: slow neural
tracking of the speech envelope and high-frequency speech-
related frequency following responses, achieving a significant
improvement over the linear baseline [17]. Wu et al. have de-
composed speech signals into envelopes in 12 frequency bands
for more intelligible speech reconstruction [18]. This motivates
the present work to utilize multi-band envelope information to
guide the model towards more accurate envelope decoding.

To sum up, the aim of this work was to improve the decoding
accuracy of reconstructing the speech envelope from the 64-
channel EEG signal. Specifically, we propose a context feed
forward Transformer network called Context-FFT, which com-
bines multi-head attention mechanism and the context layer.
Moreover, the raw speech is decomposed into envelopes of 12
frequency bands for model optimization. For model evaluation,
we employ the SparrKULee dataset [19] as designated by the
ICASSP Auditory 2023 Challenge [8].

II. METHODS

The proposed architecture, Context-FFT, is modified based
on the system proposed by [16] as shown in Fig. 1. The
input EEG signals are first fed into a convolutional layer for
input embedding, then are passed through the modified FFT
blocks to model the relationship between given EEG signals
and speech features using the multi-head attention mechanism.
The attention-weighted features are further refined through a
context layer. Finally, the outputs of stacked blocks are fused
by a linear layer to summarize extracted information into a
single speech envelope. Key components and modifications are
illustrated as follows.

A. Multi-head Attention Module

The multi-head attention module is based on Transformer’s
self attention mechanism [14], which can attend to specific
tokens according to their attention scores. The normalization
layer is placed inside the residual blocks instead of putting it
between the residual block to help the model converge faster
[20].

B. Context Layer

WaveNet [21] used a context module to expand the receptive
field of the model. Similarly, VLAAI [6] employed a context
layer to refine outputs by taking existing outputs into account.
Inspired by these works, a context layer is introduced in
the pre-LN FFT block, referred as the modified FFT block.
Inside the context layer, attention-weighted features are passed
through a convolutional layer with a kernel size of 9 and
padding of 4, which is then followed by a nonlinear transfor-
mation using the ReLU activation function and a 1D convolu-
tional layer. Finally, resulting features are normalized through
layer normalization and adjusted using residual connections to
obtain the refined features.
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Fig. 1. Architecture of the proposed Context Feed Forward Transformer net-
work, Context-FFT. Dash lines through the global conditioner block indicate
that the block is only used in held-out stories test.

C. Auxiliary Global Conditioner

According to [16], the auxiliary global conditioner is only
for within-subject generation, which provides the model with
additional information of seen subjects. Specifically, it encodes
a subject’s identity into an embedding matching the dimension
of the input embedding. This embedding is then added to the
input embedding and fed into the modified FFT blocks.

III. EXPERIMENTS

For comparative studies, we perform experiments in Spar-
rKULee dataset [19]. Details about the dataset and preprocess-
ing procedure are provided as follows.

A. Dataset

The SparrKULee dataset [19] contains 85 participants with
normal hearing. EEG data were recorded from 64 channels
using a BioSemi ActiveTwo system at a sampling rate of 8192
Hz. All the stimuli are single-speaker stories spoken in Flemish
by a native Flemish speaker, stored at a sampling rate of 48
kHz. Each subject listened to between 8 and 10 trials, each
of approximately 15 minutes in length, totaling 168 hours of
EEG data and 157 hours of stimuli.

For all our experiments, we use the preprocessed dataset
provided by the challenge [8], which has already been nor-
malized and split into train, validation and test set in a 1:1:1
ratio. Specifically, the training set includes EEG data from 71



subjects, numbered from sub-01 to sub-71. The test set consists
of held-out stories (test set 1) and held-out subjects (test set
2). Test Set 1 includes EEG data from 71 subjects seen in
training, while the corresponding stimuli are never used in the
training set, thus referred as held-out stories, amounting to a
total of 944 minutes. Test Set 2 includes EEG data from the
remaining 14 subjects, numbered from sub-72 to sub-85 who
are not in the training set, thus referred as held-out subjects,
amounting to a total of 1260 minutes.

B. Data Preprocessing
The preprocessing procedure follows the setting of [8, 19].

For EEG data, firstly raw EEG recordings are downsampled
from 8192 Hz to 1024 Hz and a multichannel Wiener filter is
applied to remove eye blink artifacts. Then, the EEG signal is
re-referenced to a common average. Finally, the EEG signal
is downsampled to 64 Hz. As for stimuli, a sixth-order But-
terworth filter is applied to band-pass filter raw speech signals
to obtain 12 frequency band signals with center frequencies
between 80 and 3000 Hz following the setting in [9, 18]. Next,
each frequency band signal is filtered using a GammaTone
filter bank with 28 subbands at equivalent bandwidth intervals
with center frequencies ranging from 50 Hz to 5 kHz. Then, the
absolute value of each sample in the filter is raised to the power
of 0.6 and averaged to obtain a single speech envelope. Finally,
the obtained envelope is downsampled to 64 Hz. During the
training phase, we use the 12 subband estimated envelopes and
the original signal’s 12 subband envelopes as inputs of the loss
function for optimization.

To improve computational efficiency, EEG signals and
speech features are randomly cropped into segments of 5
seconds in the training phase. During testing, EEG signals
are split into 5-second segments and are fed into the model,
whose outputs are then concatenated together to make the
entire envelope.

C. Channel Groups of Cortical Regions
To investigate the impact of different cortical regions on

processing continuous speech, the cortical regions are divided
into eight channel groups (CG) following the setting from
[22], as shown in Table I. Broca’s and Wernicke’s areas are
considered to be related to auditory production [23], and
speech stimuli may also activate the auditory cortex. Moreover,
the motor cortex, prefrontal cortex, and sensory cortex regions
incorporate together in language production and processing
[22].

D. Network Configuration
This work uses the TensorFlow framework to implement

the linear decoder and VLAAI models for comparison, and the
proposed model is implemented using the PyTorch framework.
The number of modified FFT blocks is set to 8 and we
use 2 heads for multi-head attention. The negative Pearson
correlation is used as the loss function as required by the
challenge [8]. We use the Adam optimizer with an initial
learning rate of 0.0005 and a StepLR scheduler with a learning
rate decay factor of 0.9.

IV. RESULTS AND DISCUSSION

In this section, we demonstrate the performance of Context-
FFT on the SparrKULee dataset [19]. It is then compared with
linear decoder [9] and VLAAI [6], which are both baselines
provided by the challenge [8], as well as the HappyQuokka
System [16], which placed the first in the challenge. Subse-
quently, an ablation study is conducted to evaluate effects of
key components on model performance. In the end, we present
the results of decoding performance of different brain regions
and discuss its potential applications in smart hearing aids.

A. Model Performance

Table II shows the results of different models on the test
set. Pearson correlation (Pearson r) is employed as evaluation
metric between estimated envelopes and actual envelopes.
Reconstruction scores of test set 1 (S1) and test set 2 (S2) are
averaged across stimuli and subjects. Final score is a weighted
sum of the average Pearson r of both test subsets defined by
the challenge [8], computed as

Final Score =
2

3
S1 +

1

3
S2. (1)

From Table II, we observe that our proposed model Context-
FFT outperforms both baseline models and the state-of-art
HappyQuokka model. Specifically, Context-FFT achieves an
average Pearson r of 0.2180±0.1004 for held-out stories and
0.0701±0.0428 for held-out subjects, achieving the highest
final score of 0.1639. Notably, our model has significantly
improved in held-out stories by 51.65% and 23.17% com-
pared with the linear decoder and VLAAI respectively. As
for held-out subjects, the decoding performance slightly de-
clines compared with other three models, possibly because the
model’s ability to learn unique characteristics of seen subjects
has improved due to feature enhancement and context layer,
however, feature patterns learned from seen subjects can’t fit
well to unseen subjects, thus leading to a decrease in decoding
performance.

B. Ablation Study

To gain insight into what parts of the model are respon-
sible for improvements on decoding performance, we have
conducted ablation studies on the basis of the HappyQuokka
model [16], which is referred as the benchmark model. Since
our proposed model Context-FFT has outperformed baseline
models by a large margin on held-out stories, while results
of ablation studies on held-out subjects have minimal changes
and are all below 0.1, we only present ablation studies on held-
out stories. Specifically, key modules are added to the original
stacked FFT block in the following steps:
1. Benchmark+FB: decomposing speech signals into 12 sub-
bands and extracting their envelopes respectively on the basis
of the benchmark model. FB is short for Filter Band.
2. Context-FFT: adding a context layer to the FFT blocks of
the model in step 1.

Figure 2 shows the decoding performance of baseline mod-
els and each model variant in held-out stories. First of all,



TABLE I
CHANNEL GROUPS FOR CORTICAL REGIONS

Channel Groups Cortical Regions Channels

CG1 Broca’s and Wernicke’s areas AF3, F3, F5, FC3, FC5, T7, C5, TP7, CP5, P5

CG2 Auditory cortex FT7, FT8, T7, T8, TP7, TP8

CG3 Motor cortex FZ, F1, F2, F3, F4, FC1, FC2, FC3, FC4, CZ

CG4 Prefrontal cortex FPZ, FP1, FP2, AF3, AF4, F5, F6, F7, F8

CG5 Sensory cortex CZ, C1, C2, C3, C4, CPZ, CP1, CP2, CP3, CP4

CG6 Left brain FP1, AF3, F1, F3, F5, F7, FC1, FC3, FC5, FT7, C1, C3, C5, T7,
CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO5, PO7, CB1, O1

CG7 Right brain FP2, AF4, F2, F4, F6, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8,
CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO6, PO8, CB2, O2

CG8 Whole brain All 64 channels

TABLE II
PERFORMANCE OF MODELS ON TEST SETS OF SPARRKULEE DATASET

Model Test Set 1 Test Set 2 Final Score

Linear Decoder [9] 0.1054±0.0538 0.0960±0.0387 0.1023
VLAAI [6] 0.1675±0.0732 0.1139±0.0410 0.1496

HappyQuokka [16] 0.1895±0.0869 0.0976±0.0444 0.1589
Context-FFT 0.2180±0.1004 0.0701±0.0428 0.1639

the median Pearson correlation values of all model variants
have gradually increased. The decoding performance of Bench-
mark+FB has improved by 9.3% compared to the benchmark
model, suggesting that the model can better find the corre-
spondence between EEG signals and speech stimuli from the
envelopes of different sub-bands than from the entire envelope.
It also demonstrates that combining inherent characteristics of

Fig. 2. Results of the ablation studies. Each point in the violin plot represents
the average Pearson correlation for a subject averaged across stimuli.

auditory-EEG processing can fit the relationship between EEG
signals and speech stimuli more precisely, further enhancing
the model’s feature fusion capability. Furthermore, the per-
formance of Context-FFT has also significantly improved by
13.1% compared with the benchmark model, indicating that
expanding the model’s receptive field can enhance its ability
to extract useful context information.

C. Contributions of Cortical Regions

Figure 3 shows the comparison of decoding performance of
different cortical regions in decoding speech envelopes from
EEG signals.

First of all, we can observe that the Pearson r of CG8 is
the highest among all groups, indicating the entire brain has
involved in processing speech stimuli. Among the remaining
groups, CG6 has the highest reconstruction score, followed
by CG1 and CG2. Specifically, CG1 corresponds to Broca’s

Fig. 3. Decoding performance of different cortical regions.



and Wernicke’s areas which are located in the left brain
region (CG6). Reconstruction scores of CG1 and CG6 are
relatively close, suggesting that Broca’s and Wernicke’s areas
play crucial roles in auditory processing of the left brain, which
is consistent with conclusions obtained in [22, 23].

Moreover, we can observe from results of CG6 and CG7 that
the involvement of the left brain is higher than that of the right
brain in processing speech stimuli. Results of CG3, CG4, and
CG5 are the lowest among all groups, indicating that when
the brain processes speech stimuli, the corresponding motor
cortex, prefrontal cortex and sensory cortex are also activated,
but their contributions are relatively small compared to the
auditory cortex and Broca’s and Wernicke’s areas.

Although CG2 covers only 6 channels, its Pearson r is
relatively close to scores of CG1 and CG6, which cover 10
channels and 27 channels separately. Therefore, the above re-
sults have demonstrated that using fewer channels can achieve
similar performance obtained by using full-channel EEG sig-
nals, which is essential for EEG-based smart hearing aids that
require low computational costs and short computation times,
allowing users to receive real-time feedback from the devices.

V. CONCLUSIONS

This work proposes a new model called Context-FFT for
decoding speech envelopes from EEG signals and demon-
strates that the performance of this model surpasses the SOTA
model of the ICASSP Auditory 2023 Challenge. On average,
Context-FFT achieves a Pearson r of 0.2180 on the held-
out-stories and 0.0701 on the held-out subjects. Furthermore,
through ablation experiments, it is determined that utilizing
the context layer and incorporating the inherent characteristics
of EEG signals play a crucial role in improving the model
performance. Although our model achieves better results on
seen subjects, the generalization performance on unseen sub-
jects is not significantly improved, indicating that improving
the generalization ability of the model remains challenging.
Additionally, the decoding performance of the Broca’s and
Wernicke’s areas containing 10 channels and the auditory
cortex containing 6 channels are close to the performance
obtained using 64-channel EEG signals, providing a theoretical
basis for achieving a balance between computation speed
and decoding performance in portable EEG-based cochlear
implants and other hearing devices.
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