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Abstract—In this paper, we present Bluemarble, a novel neural
articulation-to-speech (ATS) system designed to generate high-
quality speech from articulatory recordings. Traditional ATS
methods often demand a substantial dataset of corresponding
articulatory and speech signal pairs for effective model training.
This requirement arises because these approaches treat the esti-
mation of acoustic features as a regression task, which can pose
difficulties for accurately mapping latent articulatory features
to the desired speech-related features. To tackle this challenge,
we propose a method that involves employing a finite learned
codebook to constrain the uncertainty latent space. Operating
within a framework consisting of a speech mel-spectrogram
encoder, quantizer, and decoder, our model establishes a mapping
rule between the latent embeddings derived from electromagnetic
articulography (EMA) signals and quantized discrete speech
tokens. During the inference stage, EMA embeddings are first
transformed into speech-related discrete tokens, which are then
input into a neural vocoder to synthesize the speech waveform.
Experimental results show that our approach outperforms exist-
ing state-of-the-art methods in both qualitative and quantitative
assessments. Audio samples are available online.1

I. INTRODUCTION

Articulation-to-speech (ATS), the task of utilizing articula-
tory movements in speech synthesis, is a field of research that
holds significant importance with numerous practical applica-
tions [1]. It provides essential communication tools for individ-
uals facing challenges in producing audible speech freely, such
as those who have undergone laryngectomy. In addition, ATS
systems can play a crucial role in establishing a connection
between neural activity in the brain and speech signals, making
it a valuable intermediate step in the development of brain-to-
speech systems [2]–[4].

Previous works have used a wide variety of approaches
for modeling ATS systems. Gaussian mixture model (GMM)-
based ATS synthesizers have been designed to estimate the
vocal tract spectrum from articulatory movements [5]. Hid-
den Markov model (HMM)-based methods have also been
adopted for this task, combined with a codebook-based net-
work [6]. More recently, the emergence of deep neural models
has led to significant improvements in the speech synthesis
quality of ATS systems compared to traditional statistical-
based approaches [7]–[11]. For example, ATS models often

1https://sam-0927.github.io/Bluemarble/

incorporate fully connected layers along with uni- and bi-
directional LSTM-based networks [7], [12]. The inclusion of
attention-based transformer modules [13] have further con-
tributed to advances in the field; in [8], transformer blocks
are employed to estimate mel-frequency cepstral coefficients
(MFCCs) from articulatory features. Based on the CARGAN
vocoder [14], [9] directly predicts waveforms from EMA sig-
nals without intermediate acoustic features using an adversarial
training criterion. Text-to-speech (TTS)-based methods have
been adopted [10] to extract pitch and energy information
from articulatory recordings and generate high-quality mel-
spectrograms. Voice conversion-based schemes have also been
utilized to synthesize speech from articulated content using the
voices of different speakers for vocalization [11].

Although the aforementioned frameworks have demon-
strated impressive speech synthesis capabilities, they have
typically required a substantial number of parallel articulation
and speech recording pairs for model training. Furthermore,
they often treat the ATS task as a regression problem, min-
imizing the mean-squared error (MSE) between estimated
and target acoustic features. Mean-squared error primarily
aims to minimize the energy difference between two features,
resulting in a lack of fine-grained feature estimation (coarse
granularity) in complex latent domains [15]–[17]. This can
make it challenging to precisely reconstruct intricate target
acoustic features from the complex latent embeddings.

In this paper, we propose a neural network-based ATS sys-
tem designed to decode high-quality covert speech from artic-
ulatory kinematics by adopting acoustic tokens extracted from
pretrained codebooks. Our overall system utilizes two network
training flows: one for mel-spectrogram codebook training
and another for articulation-to-acoustic token modeling. Ini-
tially, acoustic tokens are estimated from a neural speech
compression model through adversarial training [18], utilizing
mel-spectrograms. Upon the completion of mel-spectrogram
codebook training, an electromagnetic articulograph (EMA)
encoder is trained to predict the corresponding acoustic tokens
from articulatory recordings, estimating the appropriate code-
book indices using cross-entropy loss. The mel-spectrograms
are then reconstructed using the estimated acoustic tokens. In
the final step, raw speech waveforms are generated by passing
the synthesized mel-spectrograms through a pretrained vocoder



(e.g. HiFi-GAN [19]). The key advantages of our framework
can be summarized as follows:

• Discretized prediction task: Thanks to the simpler pre-
diction task involving discrete, quantized acoustic tokens
rather than regression in a continuous latent space, our
model can more effectively generate speech from articu-
latory movements.

• Less paired data required: Our proposed articulation-
to-acoustic token modeling framework can be trained
using a significantly smaller amount of paired recordings
between articulatory and speech signals compared to
previous methods.

II. RELATED WORK

A. Style modeling for multi-speaker ATS systems

The most closely related work to ours is [10], which
addresses the task of estimating ground-truth mel-spectrograms
from EMA signals [20]. Our baseline approach is centered
around the reconstruction of mel-spectrograms in a multi-
speaker setting, simultaneously estimating both the target
speaker’s speaking style and contextual information from the
provided EMA signals. The entire framework is built using
modules that are integrated using convolutional neural network
(CNN) and self-attention-based layers. It then utilizes the HiFi-
GAN neural vocoder [19] to reconstruct raw speech waveforms
from mel-spectrograms.

B. Acoustic feature tokenization in generative models

There has recently been an increasing focus on utilizing
discrete acoustic tokens as speech representations for gener-
ative speech modeling [21], [22]. The key idea is to predict
a sequence of tokens from a codebook, which can then be
decoded into more concrete speech representations (e.g. raw
audio). High-quality speech can be generated by splitting the
task into multiple stages that model semantic and acoustic
details successively. This approach simplifies the generation
task due to the inherent constraints on the codebook’s size, and
allows models to be trained using abundant unlabeled audio-
only data. AudioLM [23], WavLM [24], CLaM-TTS [25], and
LM-VC [26] are key examples of this modeling approach.
SPEAR-TTS [27] is an extension to this approach that learns
a mapping between text and acoustic tokens to perform TTS.
This work leverages the benefits of the aforementioned token-
based acoustic modeling in the development of an articulation-
to-speech framework.

III. PROPOSED MODEL

In this section, we provide a comprehensive overview of our
proposed network, Bluemarble. Our model employs a two-step
learning process to predict mel-spectrograms from the EMA
signals, shown in Figure 1. First, we train an autoencoder-
based neural speech compression model to learn a codebook
of acoustic tokens. These tokens are used to encode a mel-
spectrogram into a set of discrete representations. The autoen-
coder’s decoder is trained to reconstruct the mel-spectrogram
given a set of codebook indices. Second, we train an EMA

encoder to predict discrete acoustic tokens in the codebook
from articulatory signals while freezing the codebook and mel-
spectrogram decoder. During inference, we input the acoustic
tokens predicted by the EMA encoder into the pretrained
decoder to generate the target mel-spectrogram. Then, we
synthesize a speech waveform from the mel-spectrogram using
a pretrained HiFi-GAN vocoder [19].

A. Mel-spectrogram codebook training

Since speech signals contain complex and intertwined infor-
mation, including content and speaker characteristics, it can
be challenging to directly predict these intricate continuous
spaces from articulatory signals. We alleviate this problem by
changing the prediction domain from a continuous latent space
to a discrete latent space, bridging the two distinct domains
with reduced uncertainty.

In our proposed model, we encode the mel-spectrograms
S1:T = s1, ..., sT , where s ∈ R1×Fs , of a target speech
signal to create a discrete codebook. The model has an
autoencoder structure consisting of encoder EMel, codebook
Q, and decoder DMel [28]. Both the encoder and decoder
that down-samples and up-samples the acoustic features [29]
are equipped with an attention module and residual blocks.
The encoder in our model is comprised of five residual blocks,
each consisting of a 2D convolutional layer with dropout and
group normalization, an attention layer, and five additional
2D convolutional layers. The decoder is composed of seven
residual blocks, an attention layer, and five 2D convolutional
layers. The encoder estimates hidden features, denoted as
Ẑ ∈ RF ′×T ′×d, from the mel-spectrogram and subsequently
converts them into discrete tokens Zq through a codebook,
where d represents the dimension of the codebook entries,
and F ′ × T ′ corresponds to a reduced frequency and time
dimension. Meanwhile, the decoder predicts mel-spectrograms
based on the quantized representations.

Ẑ = EMel(S1:T ), Zq = Q(Ẑ),

Ŝ1:T = DMel(Zq).
(1)

We train our model using the LSGAN [30] method to
enhance the intelligibility of the reconstructed output. The
discriminator is built with a 2D convolutional layer featuring
skip connections and the Exponential Linear Unit (ELU) acti-
vation function. The overall loss for training the autoencoder
is defined as follows:

LAE
total = LG + LD + LV Q, (2)

where LG and LD are generator and discriminator losses and
the VQ loss is defined as:

LV Q = λ||Ẑ − sg(Zq)||22 + ||sg(Ẑ)− Zq||22, (3)

where λ is 0.25. The sg means stop gradient.
A crucial consideration in the process of codebook design

is how to determine the number of codebook entries. As
the codebook size expands, the task of accurately predicting
acoustic tokens from EMA signals becomes progressively



Fig. 1: Architecture of Bluemarble. During codebook training, the target mel-spectrogram is fed into the mel encoder, and it is converted
to discrete acoustic tokens by utilizing vector quantization (VQ) codebooks. These tokens are subsequently decoded back into the original
mel-spectrogram. The codebook training is carried out concurrently with the reconstruction of the input mel-spectrogram. During acoustic
token modeling, the electromagnetic articulography (EMA) encoder utilizes speaker embeddings to predict the target indices of acoustic tokens
in the pretrained codebook. The snow symbol means that the module’s weights are frozen.

more challenging. Conversely, when the codebook size is
too small, the decoder may encounter difficulties in learning
how to reconstruct high-quality acoustic features. Taking these
factors into account, we chose a codebook size of 32. We
conducted an ablation experiment to assess how variations in
codebook size affect the model’s performance in Section IV.

B. Articulatory to acoustic token modeling

After the codebook has been trained, we proceed to freeze
it, as well as the decoder. We then train an encoder that
takes in EMA signals and predicts the acoustic tokens for the
corresponding target acoustic feature. Constructing a codebook
as we do above enables us to map EMA signals to discrete
acoustic tokens instead of directly predicting acoustic features.

To predict acoustic tokens, we employ a 2D convolutional
module with residual connections and group normalization,
maintaining a structure identical to that of the mel encoder. We
also apply a 1D convolution to the EMA signal input A1:T =
{a1, a2, ..., aT }, where a ∈ R1×Fa , with the aim of increasing
the channel size to align it with the target mel-spectrogram.
Additionally, we incorporate speaker information into the
model because the characteristics of articulatory signals differ
from one person to another. The EMA encoder processes the
input to predict the acoustic token index within the pretrained
codebook, then the decoder estimates the acoustic features.

Ẑ ′ = EEMA(EMA1:T + espk), espk = H(i), (4)

where espk denotes speaker embedding created by the fully
connected layer H. We train the EMA encoder using cross-
entropy loss between predicted and target acoustic token
indices.

LCE = − 1

L

L∑
i=1

yi log(F(Ẑ ′)i), (5)

where F denotes the classifier consisting of a fully connected
layer and softmax. y and L denote the target and codebook
size, respectively.

IV. EXPERIMENTAL SETUP

A. Dataset

We utilize the publicly available Haskins dataset haskins,
which consists of paired speech and EMA signals collected
from 4 male and 4 female speakers. Each speaker’s data
covers approximately 55 minutes of recordings, with the
EMA signals recorded at a sampling rate of 100 Hz and
the speech signals at 44.1 kHz. We excluded silence regions
and applied a pretrained denoising model [31] among speech
enhancement models [32]–[35] to eliminate background noise
from all speech samples. For computational convenience, we
downsampled the speech samples from 44.1 kHz to 16 kHz.
For further processing, the speech data was transformed into
40-dimensional mel-spectrograms using Short-Time Fourier
Transforms (STFTs) at intervals of 10 ms, using a 25 ms
window. The EMA data is represented as an 18-dimensional
vector, where each dimension corresponds to one of the 6
sensors (TR, TB, TT, UL, LL, jaw), and each sensor comprises
3 trajectory orientations (X: posterior to anterior, Y: right to
left, Z: inferior to superior).

In Table I, both our model and baseline models undergo
training with a paired dataset spanning 5 hours. In contrast,
we train the codebook and decoder using a speech-only dataset
lasting 5 hours, while the EMA encoder is trained using paired
datasets of 5 and 1 hour as detailed in Section V-C.



TABLE I: Objective test results.
Objective

Model NISQA-T↑ NISQA-E↑
Reference 2.63±0.02 3.86±0.03

[8] (ACL 21’) 2.08±0.02 2.9±0.03
[9] (INTERSPEECH 22’) 1.84±0.02 2.22±0.02

[10] (ICASSP 23’) 2.29±0.02 3.02±0.03
Bluemarble (Ours) 2.66±0.02 4.22±0.02

Fig. 2: A/B preference test results.

B. Training

We performed training on a single NVIDIA RTX 3090 GPU
for a total of 150 epochs. We employed the Adam optimizer
(β1 = 0.5, β2 = 0.9, and ϵ = 1e − 8) for training both the
EMA encoder and EMA discriminator, setting their respective
learning rates to 1e− 4 and 1e− 5. We utilized a HiFi-GAN
neural vocoder pre-trained on the VCTK dataset [36].

V. EXPERIMENTAL RESULTS

A. Objective measurement

To evaluate the clarity and overall quality of synthesized
speech, we use speech quality assessment metrics, NISQA-
TTS (NISQA-T) [37] and NISQA-Enhance (NISQA-E) [38].
NISQA-TTS is relevant to evaluating the naturalness of the
synthesized speech, while NISQA-Enhance focuses on measur-
ing fundamental audio clarity and quality. As shown in Table
I, our proposed model shows superior performance compared
to all baseline models. Notably, Bluemarble achieves NISQA-
TTS scores of 2.66 vs. 2.29 and NISQA-Enhance scores of
4.22 vs. 3.02 compared to the best baseline [10], demonstrating
its capabilities for generating high quality speech that is both
natural and intelligible. Furthermore, these results show that
our framework of predicting discrete acoustic tokens from a
codebook, rather than directly estimating acoustic features,
significantly enhances ATS performance.

B. Subjective measurement

To assess generated sound quality as perceived by human lis-
teners, we conducted an A/B preference listening test between
each baseline and our proposed model. 14 listeners participated
in the test. After listening to pairs of speech samples, consisting
of one from Bluemarble and one from a baseline, participants
were asked to choose the preferred speech sample based on
the quality of sound. Results are shown in Figure 2. For
all comparisons, participants showed much higher preference
for samples synthesized by Bluemarble, demonstrating its

Fig. 3: Mel-spectrogram of target (left), generated by baseline
(middle) and Bluemarble (right). The Bluemarble’s sample has better
quality than that of the baseline. The distinct pitch is especially
evident in the region delineated by a black box. To facilitate a detailed
comparison, we generate a mel-spectrogram of synthesized speech
using an 80-dimensional resolution from a pre-trained vocoder, as
opposed to the 40-dimensional output from the decoder.

TABLE II: Performance evaluation in terms of a codebook size and
training dataset size.

Codebook Data NISQA-T↑ NISQA-E↑
32 5h 2.66±0.02 4.22±0.02
64 5h 2.59±0.02 4.10±0.02
16 5h 2.63±0.02 4.15±0.02
32 1h 2.55±0.02 4.17±0.03
64 1h 2.52±0.02 3.77±0.03
16 1h 2.55±0.02 4.08±0.03

superiority in terms of subjective evaluation in addition to
objective metrics.

C. Ablation study

To assess the influence of codebook and training dataset size
on Bluemarble’s performance, we conducted model training by
varying codebook and training dataset size.
Codebook size. As shown in Table II, compared to the
standard model with codebook size 32, model performance
decreases when adopting smaller (16) or larger (64) codebook
sizes. A larger codebook size allows for a more comprehensive
representation of the signal, facilitating the reconstruction of
acoustic features during modeling. However, it also means that
the EMA encoder must learn to predict a larger number of
tokens, which is more difficult. We conjecture that this caused
a reduction in the quality of synthesized speech due to the more
challenging token prediction task. Conversely, when the code-
book size is too small, the acoustic tokens fail to adequately
encode all of the information in the acoustic features, leading
to degradation in reconstructing them. These findings highlight
the importance of selecting an appropriate codebook size that
strikes a balance between encoding sufficient information to
reconstruct the mel spectrogram features and allowing the
model to effectively predict acoustic tokens for high-quality
speech synthesis.
Dataset size. Table II shows the NISQA-T and NISQA-
E scores for Bluemarble trained on 1 hour vs. 5 hours of
paired EMA and speech data. We can see that our model
still demonstrates reasonable performance even when trained
with only 1 hour of data, achieving 2.55 and 4.17 NISQA
scores. This demonstrates that decoupling the training of the
codebook and mel-spectrogram autoencoder with that of the



EMA encoder allows for high-quality speech synthesis even
with only a small amount of paired data.

VI. CONCLUSION

In this paper, we proposed Bluemarble, an articulation-to-
speech (ATS) system that uses electromagnetic articulogra-
phy (EMA) signals. Utilizing concepts from recent trends in
generative audio modeling, our model predicts a sequence of
discrete acoustic tokens in a codebook rather than predicting
continuous acoustic features. Specifically, it learns a mapping
from the EMA signals to discrete latent acoustic embeddings
represented by vector quantization codebooks, which are then
decoded to produce mel-spectrograms. Experiments demon-
strate that our model surpasses previous state-of-the-art models
in terms of the clarity and naturalness of synthesized speech, as
confirmed by both objective and subjective evaluation metrics.
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