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Abstract—Target speaker extraction (TSE) is a practical solution 

to the cocktail party problem. Recently, a novel embedding-free 

TSE method was proposed. In this method, the enrollment and the 

mixed signal are directly interacted to exploit the contextual 

information within the enrollment. In the absence of noise, the 

derived guidance exhibits the onset, offset and voice activity 

similar to the mixed signal. However, in the presence of noise, such 

similarity may be destroyed since the enrollment is interacted with 

both speech and noise signals in the mixture. If the noise (e.g., 

babble noise) contains components that resemble the enrollment 

to some extent, the misleading guidance may be generated after 

the direct interaction. To tackle this issue, an additional enhancer 

is designed in this paper to derive an auxiliary guidance that 

emphasizes the active speech. Specifically, this enhancer consists 

of a processing block and an interaction block. The processing 

block mainly utilizes the recurrent layers to model the temporal 

dynamics of the enrollment and mixed signal. In this block, the 

speech and noise signals are modeled in different manners and the 

similarity between the enrollment and noise can be reduced. 

Afterwards, the processed representations of the enrollment and 

mixed signal are utilized to derive an enhanced representation in 

the interaction block. This enhanced representation emphasizes 

the active speech and is employed as an auxiliary guidance for the 

extraction. Experimental results demonstrate the effectiveness of 

our proposed method in complex acoustic environments. 

I. INTRODUCTION 

In complex acoustic environments, the mixed signal 

captured by the microphone may comprise speech signals from 

multiple speakers, noise and reverberation. While human 

beings can effectively focus on the speaker of interest in such 

environment, it is hard for the machine to possess this 

capability. This challenge is known as the cocktail party 

problem [1]. To tackle this problem, the speech separation (SS) 

and target speaker extraction (TSE) are primarily studied. The 

SS aims to estimate all speech signals within the mixed signal 

[2] and has recently achieved outstanding performance [3-6]. 

However, the SS assumes to know the number of speakers and 

faces the global permutation ambiguity [7-8]. These issues 

make the SS less practical in real-world scenarios. In contrast, 

the TSE focuses on isolating the target speaker’s speech, guided 

by the auxiliary information of the target speaker [9]. Hence, 

the TSE is a more practical solution since it does not require to 

know the number of speakers and avoids the global permutation 

ambiguity. In this paper, the reference utterance of the target 

speaker, known as the enrollment, is employed as the auxiliary 

information due to its effectiveness and easy accessibility. 

Depending on how enrollment is leveraged, the TSE can be 

divided into two categories: embedding-based TSE method and 

embedding-free TSE method. Typically, the embedding-based 

TSE method derives a speaker embedding from the enrollment 

and employs this embedding as guidance. In [10-11], the 

speaker embedder pretrained on the speaker verification or 

recognition task was employed to derive the embedding. In [12-

13], the speaker embedder was jointly trained with the 

extraction network to address the sub-optimization issue. 

Besides, techniques such as speaker representation loss [14] or 

self-supervised disentangled representation [15] were adopted 

to improve the embedding discriminability. Following the 

derivation of the speaker embedding, the extraction process 

involves fusing the embedding with the features of the mixed 

signal and various fusion methods have been proposed [16-19]. 

Additionally, the multi-stage framework [20], onset/offset 

information [21] or iterative refined adaptation [22] have been 

used to boost the extraction performance. Nevertheless, being 

a compact vector, speaker embedding mainly summarizes the 

speaker characteristics and discards the content details. Thus, 

these embedding-based TSE methods may not fully leverage 

the contextual information within the enrollment. 

Recently, the embedding-free TSE methods have gained 

increasing attention since both the speaker characteristics and 

the content details are leveraged. In [23-25], high-dimensional 

feature sequences derived from the enrollment and the mixed 

signal were fused through various attention mechanisms. In 

[26], the hidden states and cell states of the recurrent neural 

network (RNN) were adopted to summarize the speaker 

information. In [27], two pooling approaches were introduced 

to generate speaker representations. In these methods, the 

processed feature sequences or states were utilized as guidance 

and the contextual information is partially exploited. In [28], 

the enrollment and mixed signal were directly interacted 

through an attention mechanism. In the absence of noise, the 

derived guidance of this contextual information exploitation 
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network (CIENet) exhibits the onset, offset and voice activity 

similar to the mixed signal. However, in the presence of noise, 

such similarity may be destroyed since the enrollment is 

interacted with both speech and noise signals in the mixture. If 

the noise (e.g., babble noise) contains components that 

resemble the enrollment to some extent, the misleading 

guidance may be generated after the direct interaction. 

Therefore, it is necessary to explore more appropriate guidance 

in complex acoustic environments. 

In this paper, we extend the CIENet with an additional 

enhancer to derive an auxiliary guidance that emphasizes the 

active speech. Specifically, this additional enhancer consists of 

a processing block and an interaction block. The processing 

block mainly utilizes the recurrent layers to model the temporal 

dynamics of the enrollment and mixed signal. In this block, the 

speech and noise signals are modeled in different manners and 

the similarity between the enrollment and noise can be reduced. 

Afterwards, the processed representations of the enrollment 

and the mixed signal are interacted to derive an enhanced 

representation in the interaction block. This enhanced 

representation emphasizes the active speech and is used as an 

auxiliary guidance for the extraction. This enhanced contextual 

information exploitation network (CIENet-Enh) achieves better 

performance in complex acoustic environments. 

The rest of this paper is organized as follows. The proposed 

TSE method is first detailed in Section 2. Afterwards, the 

experimental setup is outlined in Section 3. The results and 

discussions are presented in Section 4. Finally, the conclusions 

are drawn in Section 5. 

II. PROPOSED METHOD 

A. Problem Formulation 

Guided by the target speaker’s enrollment eR
1Le, the TSE 

aims to isolate the target speaker’s speech from the mixed 

signal yR
1Ly, namely: 

 ( )
1

ˆ
S

tgt i

i=

  
= = +   

  
x y e z n eM M  (1) 

where Le is the length of the enrollment, Ly is the length of the 

mixed signal, x̂tgt is the estimated signal of the target speaker, 

M(a|b) is the mapping function of a given b, S is the number of 

speakers, the vector zi denotes the signal coming from the ith 

speaker and the vector n represents the additive noise. 

B. Proposed Network Architecture 

As illustrated in Fig. 1, our proposed CIENet-Enh extends 

the original CIENet with an additional enhancer. 

1) Original CIENet 

The original CIENet takes the mixed signal y and the 

enrollment e as inputs to isolate the target speaker’s speech 

through mask estimation. As given in the lower part of Fig. 1, 

the mixed signal y and the enrollment e are first transformed 

into the time-frequency (T-F) domain using short-time Fourier 

transform (STFT). Their T-F representations YC
TYF and 

EC
TEF are compressed with the dynamic range compression 

(DRC) [29] to reduce the dynamic range and emphasize the 

regions with small values. The compressed T-F representations 

YcR
2TYF and EcR

2TEF are expressed as 

 ( )Concat cos , sinc Y Y

 
=Y Y θ Y θ  (2) 

 ( )Concat cos , sinc E E

 
=E E θ E θ  (3) 

where TY and TE are the frame numbers of the mixed signal and 

the enrollment, F is the number of frequencies, |Y| and |E| are 

the magnitude spectra, θY and θE are the phase spectra, 

Concat(·, ·) is the concatenation operation, γ denotes the 

compression factor ranging from 0 to 1. 

Afterward, the T-F representations Yc and Ec are interacted 

in the interaction block to derive the guidance FcR
2TYF. For 

clarity, the magnitude spectrum comparison is depicted in Fig. 

2. In the absence of noise, the direct interaction between the 

enrollment in Fig. 2(a) and the clean mixture in Fig. 2(b) leads 

to the guidance in Fig. 2(c). This derived guidance not only 

retains target speaker’s characteristics to some extent but also 

exhibits the onset, offset and voice activity similar to the clean 

mixture. In the presence of noise, the enrollment is interacted 

with both speech and noise signals in the mixture. If the noise 

contains components that resemble the enrollment to some 

extent, the misleading guidance may be generated. For instance, 

the direct interaction between the enrollment in Fig. 2(d) and 

the noise in Fig. 2(e) is depicted in Fig. 2(f). Besides, the direct 

interaction between the enrollment in Fig. 2(g) and the noisy 

mixture in Fig. 2(h) is shown in Fig. 2(i). Compared with the 

guidance in Fig. 2(c), misleading guidance in Fig. 2(i) no longer 

exhibits the onset, offset and voice activity similar to the clean 

mixture. Thus, more appropriate guidance needs to be explored. 
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Fig.1 The general framework of CIENet-Enh. 
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In the original CIENet, the guidance Fc is concatenated with 

the T-F representation Yc of the mixed signal. The stacked 

feature tensor of shape 4TYF is further processed by the 

encoder and the extractor to estimate the mask m̂c_tgtR
KTYF. 

As illustrated in Fig. 1, this mask is element-wise multiplied 

with the output Hc of the encoder to derive the feature tensor 

Ĥc_tgt of the target speaker, namely:  

 ˆ ˆ
c_tgt c c_tgt=H H m  (4) 

where K is the channel dimension and the symbol “⊙” denotes 

the element-wise multiplication. The derived feature tensor 

Ĥc_tgt is processed by the decoder to obtain the estimated T-F 

representation X̂c_tgt R
2TYF. Finally, the inverse DRC and 

inverse STFT are applied to recover the estimated signal x̂tgt. In 

practice, the STFT and inverse STFT are implemented with 

convolutional layer and transposed convolutional layer. 

2) Additional Enhancer 

To derive more appropriate guidance for complex acoustic 

environments, an additional enhancer is introduced. As shown 

in the upper part of Fig. 1, this enhancer consists of a processing 

block and an interaction block. 

The T-F representation Yc and Ec are individually processed 

by the processing block to derive the processed representations 

Yc_p and Ec_p. As depicted in Fig. 3(a), the channel dimension 

of the representation Yc is first expanded to D using a two-

dimensional convolutional layer. Then, the expanded feature 

sequence undergoes reshaping and modeling by two bi-

directional long short-term memory (BLSTM) [30] layers. The 

resulting feature is reshaped and further transformed with a 

convolutional layer to obtain the processed representation 

Yc_pR
2TYF. Similarly, the T-F representation Ec of the 

enrollment is processed to derive the processed representation 

Ec_pR
2TEF. Note that the BLSTM layers are utilized to model 

the temporal dynamics of the enrollment and mixed signal. 

Since the temporal dynamics of speech and noise signals are 

distinct, they can be modeled in different manners. In this way, 

the similarity between the enrollment and noise can be reduced. 

Afterwards, these processed representations Yc_p and Ec_p are 

interacted in the interaction block to derive the enhanced 

representation Fc_enhR
2TYF. As illustrated in Fig. 3(b), these 

representations are split into the real-part features (Yc_p_r and 

Ec_p_r) and imaginary-part features (Yc_p_i and Ec_p_i). The real-

part feature Yc_p_r is matrix-multiplied with the transposed real-

part feature Ec_p_r
T  to calculate similarity matrix Sc_p_r for 

different frames. Subsequently, the Softmax function is applied 

on the last dimension of this similarity matrix to derive the 

attention matrix Ac_p_r. This attention matrix is further matrix-

multiplied with the real-part feature Ec_p_r to obtain the 

enhanced real-part feature Fc_enh_r. Similarly, the enhanced 

imaginary-part feature Fc_enh_i can be derived, namely: 

 ( )Softmax T

c_enh_r c_p_r c_p_r c_p_r c_p_r c_p_r==F A E Y E E  (5) 

 ( )Softmax T

c_enh_i c_p_i c_p_i c_p_i c_p_i c_p_i= =F A E Y E E  (6) 

where the superscript “T” is the transpose operation. These 

enhanced features are concatenated to produce the enhanced 

representation Fc_enhR
2TYF, which is further employed as an 

auxiliary guidance. As shown in Fig. 1, the representations Yc, 

 

Fig. 2 The magnitude spectrum comparison in the original CIENet. (a) Enrollment; (b) Clean mixture; (c) Interaction between the enrollment and clean mixture;  

(d) Enrollment; (e) Noise; (f) Interaction between the enrollment and noise; 

(g) Enrollment; (h) Noisy mixture; (i) Interaction between the enrollment and noisy mixture. 
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Fig.3 (a) Processing block; (b) Interaction block. 
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Fc, Yc_p and Fc_enh are concatenated to form the stacked feature 

tensor PcR
8TYF. Note that the same interaction block is used 

in the original CIENet. 

For clarity, the magnitude spectrum comparison in this 

additional enhancer is depicted in Fig. 4. After modeling in the 

processing block, the harmonic structures of the processed 

enrollment in Fig. 4(a) and the processed clean mixture in Fig. 

4(b) are somewhat distorted. However, their interaction in Fig. 

4(c) still exhibits certain voice activity of the clean mixture and 

target speaker’s characteristics. Additionally, the interaction 

between the processed enrollment in Fig. 4(d) and processed 

noise in Fig. 4(e) is given in Fig. 4(f). Compared with the direct 

interaction between the enrollment and noise in Fig. 2(f), the 

similarity between the processed enrollment and the processed 

noise is effectively reduced. This may be due to the different 

modeling manners for the speech and noise signals in the 

processing block. Furthermore, the interaction between the 

processed enrollment in Fig. 4(g) and the processed noisy 

mixture in Fig. 4(h) is shown in Fig. 4(i). It can be observed 

that this enhanced representation emphasizes the active speech 

in complex acoustics environments. Therefore, this enhanced 

representation is employed as an auxiliary guidance, although 

the over-suppression may occur. 

3) Details of Different Modules 

The details of the encoder, extractor and decoder are 

illustrated in Fig. 5. The encoder consists of a convolutional 

layer and a rectified linear unit (ReLU). The extractor 

comprises layer normalization (LN), N basic blocks positioned 

between two convolutional layers and ReLU. The decoder is a 

convolutional layer. For fair comparison with the original 

CIENet, the same types of basic blocks are used. The first type 

is the modified dual-path RNN (mDPRNN) block derived from 

[3]. This block includes two units to model dependencies along 

both the frequency and time axes. Each unit consists of BLSTM, 

fully connected (FC) layer, skip connection and LN. The 

second type is the modified dual-path transformer (mDPTNet) 

block derived from [4], which uses multi-head attention (MHA). 

III. EXPERIMENTAL SETUP 

Three benchmark datasets derived from the Wall Street 

Journal (WSJ0) corpus are utilized in this paper. The first one 

is WSJ0 Hipster Ambient Mixtures (WHAM!) [31], which 

includes noises collected from the real-world scenarios. The 

second dataset WHAMR! [32] is the reverberant version of the 

WHAM! dataset. The third dataset is WSJ0-2Mix [33], where 

neither noise nor reverberation is introduced. Note that each 

speaker in the mixed signal is considered as the target speaker 

in turn. The sampling rate is 8kHz for all three datasets. 

To perform TSE in the T-F domain, the Hanning window is 

utilized to split waveforms. The window length and the hop size 

are set to 32ms and 16ms, respectively. Besides, the number of 

frequencies F is 129. The compression factor γ in DRC is set to 

0.5. The hyper-parameters K and D are 256 and 64, respectively. 

In the basic blocks, the number of hidden units for each 

direction of BLSTM is 128 and the number of attention heads 
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Fig. 5 (a) Encoder; (b) Extractor; (c) Decoder; 

(d) mDPRNN block; (e) mDPTNet block. 

 

Fig. 4 The magnitude spectrum comparison in the additional enhancer. 

(a) Processed enrollment; (b) Processed clean mixture; (c) Interaction between the processed enrollment and processed clean mixture; 

(d) Processed enrollment; (e) Processed noise; (f) Interaction between the processed enrollment and processed noise; 

(g) Processed enrollment; (h) Processed noisy mixture; (i) Interaction between the processed enrollment and processed noisy mixture. 
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is 4. Besides, the number of basic blocks N is set to 6. 

All models are trained with 4s long speech signals for 120 

epochs. The Adam [34] optimizer is utilized and the initial 

learning rate is set to 0.0003. In the first 100 epochs, the 

learning rate is multiplied with a factor of 0.99 for ever two 

epochs. In the last 20 epochs, this factor is reduced to 0.9. The 

gradient clipping is adopted to limit the maximum L2 norm to 

1. The training objective is to maximize the scale-invariant 

signal-to-distortion ratio (SI-SDR) [35] between the estimated 

signal and the ground-truth signal of the target speaker. 

IV. RESULTS AND DISCUSSIONS  

The SI-SDR improvement (SI-SDRi) and signal-to-

distortion ratio [36] improvement (SDRi) are employed to 

evaluate the extraction accuracy. 

A. Performance Comparison on the Complex Datasets 

In Tab. 1, the CIENet-Enh is compared with several methods 

on the WHAM! and WHAMR! datasets. The embedding-based 

methods and embedding-free methods are separated with a 

double line. The first four methods conduct the TSE in the time-

domain, while others perform the TSE in the T-F domain. 

Tab. 1 Comparison on the complex datasets. 

Methods 

WHAM! WHAMR! 
SI-SDRi 

(dB) 

SDRi 

(dB) 

SI-SDRi 

(dB) 

SDRi 

(dB) 

SpEx [8] 12.2† 13.0† 10.3† 9.5† 

SpEx+ [13] 13.1† 13.6† 10.9† 10.0† 

DPRNN-Spe-IRA [22] 14.2 14.6 − − 

SpEx++ [20] 14.3 14.7 11.7 10.7 

X-TF-GridNet [19] 15.7 16.1 15.3 14.2 

Enhance-CIENet-mDPTNet 3.5 4.8 3.8 3.8 

CIENet-mDPRNN [28] 15.7 16.1 15.5 14.1 

CIENet-mDPTNet [28] 16.6 17.0 15.7 14.3 

CIENet-Enh-mDPRNN 16.1 16.4 16.4 15.0 

CIENet-Enh-mDPTNet 17.2 17.5 17.2 15.8 

-Results with superscript “†” are given in [20]. 

On both datasets, the X-TF-GridNet [19] outperforms the 

time-domain approach using advanced network architecture [5] 

and fusion method. All five methods utilize the embedding as 

guidance and do not fully leverage the contextual information 

within the enrollment. In contrast, the CIENet achieves higher 

performance by fully leveraging the contextual information. 

However, in the presence of noise, misleading guidance may be 

generated. By introducing an additional enhancer, an auxiliary 

guidance emphasizing the active speech is leveraged and the 

CIENet-Enh can achieve better performance. Additionally, the 

Enhance-CIENet-mDPTNet is designed to show that CIENet-

Enh is more effective than the enhance-then-extract approach. 

In this reference method, the mixed signal is first denoised with 

a pretrained model [37] and then the extraction is conducted 

with the pretrained CIENet-mDPTNet model. As shown in Tab. 

1, this reference method performs the worst on both datasets. 

This is due to the sub-optimization issue of the cascaded system 

and the distortions of speech signals introduced during the 

enhancement process. In constrast, the CIENet-Enh can be 

optimized end-to-end, utilizing an enhanced representaion that 

emphasizes the active speech as an auxiliary guidance. 

B. Performance Comparison on the WSJ0-2Mix Dataset 

In Tab. 2, the CIENet-Enh is compared with a baseline 

method and CIENet on the WSJ0-2Mix dataset. The baseline 

method is similar to the CIENet-Enh, except that the direct 

interaction Fc is not used as guidance. Compared with CIENet-

mDPRNN, the performance of the baseline method degrades, 

indicating that the direct interaction Fc is more effective on the 

clean dataset. Therefore, both the direct interaction Fc and the 

enhanced representation Fc_enh are utilized as guidance in the 

CIENet-Enh. Additionally, the CIENet-Enh does not exhibit a 

significant improvement over CIENet. This is reasonable since 

the direct interaction Fc can already provide effective guidance 

on this clean dataset. Furthermore, only a marginal increase is 

observed in the number of parameters (Np) for CIENet-Enh. 

Tab. 2 Comparison on the WSJ0-2Mix dataset. 

Methods 
Np 

(106) 

WSJ0-2Mix 
SI-SDRi (dB) SDRi (dB) 

Baseline-mDPRNN 2.9 20.4 20.6 

CIENet-mDPRNN [28] 2.7 20.7 21.0 

CIENet-mDPTNet [28] 2.9 21.4 21.6 

CIENet-Enh-mDPRNN 2.9 20.9 21.1 

CIENet-Enh-mDPTNet 3.1 21.5 21.8 

V. CONCLUSIONS 

In this paper, an additional enhancer was introduced to 

extend CIENet for better accommodation of complex acoustic 

environments. Specifically, this enhancer includes a processed 

block and an interaction block. In the processing block, the 

temporal dynamics of the enrollment and mixed signal were 

modeled. By modeling the speech and noise signals in different 

manners, the similarity between the enrollment and noise was 

reduced. As a results, an enhanced representation emphasizing 

the active speech was derived in the interaction block. This 

enhanced representation was employed as an auxilary guidance 

for the extraction. Our proposed CIENet-Enh achieved superior 

performance on both WHAM! and WHAMR! datasets. 
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