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Abstract—Existing object detection methods often optimize
model structure, loss functions, and data preprocessing, but
enhancements via convolutional techniques are often overlooked.
Additionally, increasing network depth leads to the loss of
key features. This paper introduces YOLO-DC, which enhances
object detection with deformable convolution and contextual
mechanisms. YOLO-DC includes a Deformable Convolutional
Module (DCM) and a Contextual Fusion Downsampling Module
(CFD). The DCM module uses a modified deformable convolution
of Multiscale Spatial Channel Attention (MSCA) to extend the re-
ceptive field and improve feature extraction. The CFD integrates
contextual and local features post-downsampling, reducing in-
formation loss. Compared to YOLOv8-N, YOLO-DC-N improves
average precision (AP) by 3.5%, reaching 40.8% on the Microsoft
COCO 2017 dataset, with similar FPS and inference time. The
model demonstrates superior performance compared to other
state-of-the-art detection algorithms. The source code is available
at: https://github.com/Object-Detection-01/YOLO-DC.git.

I. INTRODUCTION

Current object detectors rely on Convolutional Neural Net-
works (CNNs) and transformer-based models. Transformer
models like DETR, DINO, and RT-DETR [1]–[3] captured
long-term dependencies and achieved high accuracy but needed
speed improvements compared to CNNs. The YOLO family,
based on CNNs, balanced performance and efficiency. Since
YOLOv1, enhancements like DarkNet [4], CSPNet [5], and
ELAN [6] improved feature extraction. Enhancements like
SPP [7], PANet [8], RepGFPN [9], and GD [10] enhanced
multi-scale feature fusion. YOLOX [11] and YOLOv10 [12]
improved performance by optimizing label allocation strategy.
YOLO-MS improved accuracy with deep convolution [13].

Researchers proposed various convolution techniques to
balance performance and efficiency, such as group convo-
lution [14], dilated convolution [15], depthwise separable
convolution [16], and deformable convolution [17]–[20]. De-
formable convolution (DCNv1) adjusts the receptive field
by learning offsets for each sample point [17]. Subsequent
versions, DCNv2 [18], DCNv3 [19], and DCNv4 [20], intro-
duced improvements like weight coefficient masking, weight
sharing, and removal of softmax normalization. Additionally,
attention and contextual mechanisms are crucial for improving
model performance. Attention mechanisms such as CA [21],
EMA [22], and EPSANet [23] encode semantic information
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Fig. 1. Comparison with other SOTA object detection models on the
COCO dataset: (a) AP vs. FLOPs; (b) AP vs. parameters. Notably, Faster
R-CNN, RetinaNet, and DETR-DC models are not shown due to their high
computational and parameter requirements. However, YOLO-DC outperforms
these models, as detailed in Table I.

at different scales, while GCNet [24], CGNet [25], and F-
SSD [26] enhance performance by combining multiscale se-
mantic information with contextual mechanisms.

Despite significant progress by these techniques, the opti-
mization space for convolutional enhancement was neglected
in YOLOv8. In addition, increasing network depth led to
information loss during feature extraction, causing biased gra-
dient flow and affecting accuracy [27]. Consequently, YOLOv8
achieved sub-optimal performance. To address these issues,
this paper proposes YOLO-DC, an object detection algorithm
based on YOLOv8 [28]. As shown in Fig. 1, YOLO-DC
achieves an optimal balance between computational load and
parameter count, with superior performance compared to other
state-of-the-art (SOTA) models. The main contributions of this
paper include:

1) Improving DCNv2 by introducing a Multi-scale Spatial
Channel Attention (MSCA), leading to the proposed
DCN-MSCA convolution, which accurately extends the
receptive field and constitutes a deformable convolu-
tional module (DCM) for improved feature extraction.

2) Proposing the Context Fusion Downsampling (CFD)
module to integrate contextual information and reduce
redundancy after downsampling to improve information
utilization.

3) Presenting YOLO-DC using DCM and CFD modules,
which significantly outperforms existing SOTA models
in comprehensive performance.
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Fig. 2. YOLO-DC network structure diagram.

II. PROPOSED METHOD

A. Model Architecture

This paper presents YOLO-DC, an object detector based
on YOLOv8, designed to enhance detection accuracy and
address limitations in YOLOv8 convolution and information
loss. The key components are the DCM and CFD modules.
The CFD module replaces the downsampling operation in
YOLOv8 [28], and the DCM module replaces the C2f module
in the backbone. In each stage of the backbone network,
the DCM provides robust feature extraction and an improved
receptive field, while the CFD module reduces information loss
during downsampling by enhancing features before feeding
them into the DCM. In the PAN structure, each stage is fed into
the C2f module after passing through the CFD module. This
integrated approach significantly improves detection accuracy.
The YOLO-DC network structure is shown in Fig. 2.

B. Contextual Fusion Downsampling Module (CFD)

The CFD module plays a crucial role in downsampling
and information integration. It combines local characteristics
with contextual semantic information and refines them with
global contextual information, enhancing utilization efficiency.
Positioned before the DCM module in the backbone and the
C2f module in the neck, the CFD spans the entire network
from spatial to semantic levels, facilitating rapid and accurate
feature transfer and preventing information loss.

The CFD module first performs a 3×3 convolution with
a stride of 2 for downsampling, followed by a regular con-
volution to collect local features and a dilated convolution
to capture contextual features. It then passes through a joint
feature extractor, including a concatenation layer, batch nor-
malization, and SiLU activation to fuse local and contextual
features. Finally, a global feature extractor, consisting of a
global pooling layer and two fully connected layers, extracts
features and generates a weight vector to guide joint feature
fusion and produce the final output (See Fig. 3). Inspired
by the Context Guided Block (CG Block) in CGNet [25],
the CFD module combines surrounding contextual informa-
tion with local features. While CG blocks are suitable for
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Fig. 3. CFD module schematic.
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Fig. 4. DCM module schematic.

lightweight models, they may lack pronounced feature ex-
traction capability. To maximize contextual information, the
CFD module incorporates downsampling operations before the
main convolutional module, facilitating comprehensive contex-
tual information integration. This fused information enhances
feature extraction and improves overall information extraction
capability without significantly increasing computational load.

C. Deformable Convolution Module (DCM)

The DCM module integrates principles from the C2f mod-
ule [28], preserving gradient flow. It combines residual con-
nections with the CSPNet [5] structure to enhance learning.
The DCM performs a convolution followed by a split into
two branches. One branch passes through multiple Bottleneck
modules with residual connections, then concatenates and
fuses with the other branch and the output residuals of the
Bottleneck module. The Bottleneck module in DCM employs
DCN-MSCA to reduce irrelevant regions and improve feature
extraction. The shortcut in the Bottleneck module connects at
the backbone and disconnects at the neck (see Fig. 4).

Initially, we constructed the DCM with DCNv2, which
slightly improved performance over the baseline model using
normal convolution. However, the single convolution process
in DCNv2 led to irrelevant regions. To address this, we added
a Multiscale Spatial Channel Attention (MSCA) mechanism
to DCNv2, enhancing offset attention in the X and Y direc-
tions. The improved DCN-MSCA method reconfigures offset
generation in DCNv2, resulting in better accuracy and fewer
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Fig. 5. DCN-MSCA convolution schematic.

irrelevant regions (see Fig. 5).
The MSCA mechanism extends Coordinate Attention (CA)

to tackle information loss by incorporating multiscale fusion.
While CA decomposes the global pool into one-dimensional
feature encoding for two spatial directions, its direct decom-
position using two global pooling operations is somewhat
crude. The subsequent splicing-then-convolution operation in-
adequately facilitates information exchange, contributing to
suboptimal performance [21]. Our MSCA mechanism ad-
dresses this by integrating multiscale information to enhance
accuracy by analyzing both spatial and channel information.

MSCA integrates multiscale information via CA, extracting
weights from intermediate processes for bidirectional fusion.
This enhances information interaction, with global information
guiding both directions to mitigate loss. MSCA consists of
three branches, each handling multiscale information at differ-
ent gradients. The first branch transforms global pooling into
one-dimensional codes for X and Y directions. The second
branch convolves the first, extracting Xweight and Yweight after
Sigmoid activation to refine fusion accuracy. The third branch
conducts global pooling on initial inputs, guiding encoded
information from the second branch. The integrated output
combines information from all three branches (see Fig. 6).

III. EXPERIMENT EVALUATION

A. Experiment Setups

1) Datasets: We validated the performance of YOLO-DC
using the Microsoft COCO 2017 dataset, the RUOD under-
water object detection dataset, and the PASCAL VOC dataset
(07+12). The COCO 2017 dataset includes 80 categories with
118,287 training images and 5,000 test images. The PASCAL
VOC dataset (07+12) combines VOC 2007 and VOC 2012
training and validation sets, totaling 16,551 training images
and 4,952 test images. The RUOD dataset, designed for
underwater detection, comprises 9,800 training images and
4,200 test images.

2) Implementation Details: YOLOv8 was used as the base-
line model. YOLO-DC was trained for 500 epochs, with
mosaic enhancement disabled in the last 10 epochs to improve
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accuracy. The SGD optimizer with baseline hyperparameters
was employed, using BCE loss for classification and DFL loss
with CIoU loss for box regression. To ensure accurate evalua-
tion, training was conducted from scratch without pre-training
weights. Single-scale images (640×640) were used as input,
following COCO evaluation metrics, reporting normalized AP
at different IoU thresholds and AP for small, medium, and
large targets (APs, APm, APl). Experiments were conducted on
2 NVIDIA RTX 3090 GPUs using PyTorch 2.0.

B. Comparisons

To evaluate YOLO-DC, we compared it against several
SOTA models on the COCO 2017 dataset, including Ef-
ficientDet [31], RetinaNet [32], DETR-DC [1], Faster R-
CNN [33], YOLOv7 [6], YOLOvX [11], Gold-YOLO [10],
YOLO-MS [13], and the baseline YOLOv8 [28].

The experimental results in Table I showed that each version
of YOLO-DC outperformed other models on the COCO 2017
dataset at the same computational overhead, demonstrating
significant improvements in overall performance. The en-
hanced information utilization of the CFD module and the
powerful feature extraction capability of the DCM module
significantly improved the performance of YOLO-DC. Com-
pared to YOLOv8-N, the AP of YOLO-DC-N increased by
3.5% to 40.8%, while maintaining similar computation and
parameter counts, with almost the same inference time. The
AP of YOLO-DC increased by 1.7% and 0.2% compared
to YOLOv8-S and YOLOv8-M, respectively. Additionally, all
versions of YOLO-DC outperformed EfficientDet, RetinaNet,
and Faster R-CNN. Compared to YOLOv7-Tiny, YOLOX-N,
and Gold-YOLO-N, YOLO-DC achieved AP improvements
of 3.4%, 8%, and 0.9%, respectively. Both the S and M
versions of YOLO-DC showed significant AP improvements
over corresponding versions of these SOTA models. Compared
with DETR-DC using ResNet-50 and ResNet-101, YOLO-DC-
L outperformed them by 6.9% and 5.1% AP, respectively, with
much lower computational overhead and inference time. Only
YOLO-MS models had higher APs than YOLO-DC among the
compared models. However, each version of YOLO-DC was



TABLE I
COMPARISON OF YOLO-DC WITH OTHER SOTA MODELS ON THE COCO 2017 DATASET. INFERENCE TIME ARE MEASURED WITH A BATCH SIZE OF 32.

Method Input Size APval(%) APval
50 (%) APs(%) APm(%) APl(%) FPS Latency Params FLOPs

EfficientDet-D0 512 34.3 54.2 12.0 37.3 50.2 95 10.5 ms 3.9 M 2.5 G
EfficientDet-D1 640 38.9 57.6 16.9 43.3 55.0 69 14.5 ms 6.6 M 6.1 G
EfficientDet-D2 768 42.4 61.3 20.5 46.0 57.4 51 19.6 ms 8.1 M 11 G
EfficientDet-D3 896 44.9 64.0 25.6 48.4 58.8 32 31.5 ms 12 M 25 G
RetinaNet-50 800 35.7 55.0 18.9 38.9 46.3 14 72.6 ms 29 M 165 G
RetinaNet-101 800 37.8 57.3 20.2 41.1 49.2 10 105.5 ms 38 M 205 G
Faster R-CNN 800 27.2 48.4 6.6 28.6 45.0 8 120 ms 42 M 180 G
Faster R-CNN +++ 800 34.9 55.7 15.6 38.7 50.9 2 460 ms 60 M 246 G
DETR-DC5-R50 800 43.3 63.1 22.5 47.3 61.1 12 82.4 ms 41 M 187 G
DETR-DC5-R101 800 44.9 64.7 23.7 49.5 62.3 10 96.7 ms 60 M 253 G
YOLOv7-Tiny 416 33.3 49.9 - - - 1196 0.8 ms 6.2 M 5.8 G
YOLOv7-Tiny 640 37.4 55.2 19.9 41.1 50.8 519 1.9 ms 6.2 M 13.7 G
YOLOvX-N 416 32.8 50.3 14.0 35.5 48.3 1143 0.9 ms 5.1 M 6.5 G
YOLOvX-S 640 40.5 59.3 23.9 45.2 53.8 396 2.5 ms 9.0 M 26.8 G
YOLOvX-M 640 46.9 65.6 29.0 51.2 60.9 179 5.6 ms 25.3 M 73.8 G
Gold-YOLO-N 640 39.9 55.9 19.7 44.1 57.0 1030 1.0 ms 5.6 M 12.1 G
Gold-YOLO-S 640 46.1 63.3 25.3 50.2 62.6 446 2.2 ms 21.5 M 46.0 G
Gold-YOLO-M 640 50.9 68.2 32.3 55.3 66.3 220 4.5 ms 41.3 M 87.5 G
YOLO-MS-XS 640 43.4 60.4 23.7 48.3 60.3 131 7.6 ms 4.5 M 8.7 G
YOLO-MS-S 640 46.2 63.7 26.9 50.5 63.0 110 9.0 ms 8.1 M 15.6 G
YOLO-MS 640 51.0 68.6 33.1 56.1 66.5 80 12.3 ms 22.2 M 40.1 G
YOLOv8-N 640 37.3 52.6 15.3 35.6 54.7 734 1.4 ms 3.2 M 8.7 G
YOLOv8-S 640 44.9 60.8 23.6 47.1 65.7 387 2.6 ms 11.2 M 28.6 G
YOLOv8-M 640 50.2 67.2 28.9 53.6 69.6 176 5.7 ms 28.9 M 78.9 G
YOLO-DC-N (Ours) 640 40.8 56.9 16.6 39.6 60.0 676 1.5 ms 3.9 M 8.9 G
YOLO-DC-S (Ours) 640 46.6 63.5 24.6 48.5 65.8 334 3.0 ms 13.9 M 29.2 G
YOLO-DC-M (Ours) 640 50.4 67.3 27.9 53.9 69.7 147 6.8 ms 32.9 M 70.9 G

TABLE II
COMPARATIVE EVALUATION OF YOLO-DC WITH OTHER SOTA MODELS ON THE PASCAL VOC (07+12) AND RUOD DATASETS.

Mothod Params FLOPs PASCAL VOC(07+12) RUOD

APval(%) APval
50 (%) APval(%) APval

50 (%)
YOLOv5-N [29] 1.9 M 4.5 G 45.1 72.5 53.6 72.1
YOLOv5-S 7.2 M 16.5 G 53.0 76.2 58.8 79.4
YOLOv6-N [30] 4.7 M 11.4 G 60.5 82.0 59.7 84.2
YOLOv7-Tiny [6] 6.2 M 13.7 G 53.8 79.3 57.2 85.3
YOLOv8-N [28] 3.2 M 8.7 G 59.1 79.9 61.9 85.3
YOLO-DC-N (Ours) 3.9 M 8.9 G 62.6 82.4 62.8 85.6

faster; for example, the inference time for YOLO-DC-N was
only 20% of that for YOLO-MS-XS.

For a comprehensive evaluation, we conducted comparative
experiments on the PASCAL VOC dataset (07+12) and the
RUOD dataset, including models such as YOLOv5 (N, S),
YOLOv6-N, YOLOv7-Tiny, and YOLOv8-N.

Table II presents the comparison results on the PASCAL
VOC (07+12) and RUOD datasets. YOLO-DC-N achieved
a significantly higher AP of 62.6% on PASCAL VOC, an
improvement of 3.5% over YOLOv8-N, outperforming all
selected SOTA models. On the RUOD dataset, YOLO-DC-N
achieved an AP of 62.8%, a 1.1% increase over YOLOv8-
N. Fig. 7 shows detection results comparison between YOLO-
DC and YOLOv8, highlighting the superior performance of
YOLO-DC in challenging environments.

Experiments show that YOLO-DC outperforms several
SOTA algorithms across multiple datasets in parameters, com-
putation, inference time, and detection accuracy.

C. Ablation Study

To verify the effectiveness of our proposed improvements,
we conducted ablation studies on DCNv2, DCM, CFD, and
MSCA, using YOLOv8-N as the baseline model, on the
Microsoft COCO 2017 dataset (Table III).

Starting with YOLOv8-N, which had an AP of 37.3%,
replacing normal convolution in the C2f module with DCNv2
increased AP by 1.33% to 38.63%. Further enhancing DCNv2
with MSCA led to an additional 0.4% increase, reaching
39.03%. The CFD module alone improved AP by 1.14% to
38.44%. Combining DCM and CFD in YOLO-DC resulted
in a significant AP improvement of 3.5%, reaching 40.8%.
Despite a slight increase in parameters and computational load,
inference time remained almost unchanged, indicating a favor-
able performance tradeoff. Fig. 8 illustrates the effectiveness
of feature extraction for ordinary convolution, DCNv2, and
DCN-MSCA in the model, highlighting the superior feature
extraction capability of DCN-MSCA after applying MSCA.



TABLE III
ABLATION STUDY ON DIFFERENT MODULES USING YOLOV8-N AS THE BASELINE MODEL: EVALUATING PERFORMANCE ON THE COCO 2017 DATASET.

Method APval(%) APval
50 (%) APs(%) APm(%) APl(%) FPS Latency Params FLOPs

YOLOv8-N(Baseline) 37.30 52.61 15.28 35.59 54.66 734 1.4 ms 3.2 M 8.7 G
+DCNv2 38.63 54.44 15.62 37.63 55.91 756 1.3 ms 3.2 M 7.4 G
+DCN-MSCA(DCM) 39.03 54.97 15.72 37.93 56.32 724 1.4 ms 3.2 M 7.9 G
+CFD 38.44 53.83 15.24 36.81 55.68 789 1.3 ms 3.8 M 9.8 G
YOLO-DC(DCM+CFD) 40.80 56.89 16.62 39.61 60.04 676 1.5 ms 3.9 M 8.9 G

(a) YOLOv8 (b) YOLO-DC
Fig. 7. Comparison of image detection results selected from the RUOD dataset. (a) is the detection result of YOLOv8. (b) is the detection result of YOLO-DC.

(a) Input image (b) Ordinary convolution (c) DCNv2 (d) DCN-MSCA
Fig. 8. Comparison plots of feature extraction results with different convolutions using YOLOv8 as the base model. (a) shows the input image, while (b) to
(d) display the visualized heatmaps (GradCAM) extracted by the model at the convolution stage of the backbone network after applying normal convolution,
DCNv2, and DCN-MSCA, respectively.

IV. CONCLUSION

This paper introduces YOLO-DC, an object detection
model with deformable convolution. YOLO-DC features a
Deformable Convolution Module (DCM) and a Context Fusion
Module (CFD). The DCM enhances feature extraction with
multi-scale spatial channel attention, while the CFD reduces
information loss after downsampling. Experiments show that
YOLO-DC outperforms other state-of-the-art models in both
general and underwater object detection.
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