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Abstract—Ovarian cancer remains one of the leading causes of
cancer-related deaths among women, with early detection being
pivotal for successful treatment. Accurate segmentation of ovarian
tumor regions in ultrasound images is essential to assist clinicians
in the effective diagnosis and treatment of ovarian cancer.
However, many previous studies have struggled to achieve high
segmentation accuracy due to the complex nature of ultrasound
images. These images often contain inherent noise, and symbols
marked by sonographers, which pose significant challenges for
segmentation tasks. In this study, before feeding the images into
the segmentation model, we employ an in-painting method to
remove the symbols and markers from the ultrasound image.
Then a segmentation model based on UNet3+ with ResNet50 as
its encoder is introduced. We evaluated the performance of our
model on the OTU2D dataset and demonstrated an improvement
over the existing models with the Dice, IoU, Recall and Precision
scores of 86.44%, 77.05%, 86.31%, and 89.18%, respectively.
Moreover, when testing on a subset of clean images, the pre-
processing technique based on in-painting helps to increase the
Dice and Precision metrics from 90.63% and 86.23% to 96.64%
and 96.08%. This study presents a novel approach that enhances
image segmentation capabilities by introducing an in-painting
pre-processing method and a UNet3+ model with ResNet50 as
its encoder. Our method significantly improves segmentation
accuracy and offers clinicians more reliable data for better-
informed clinical decisions.

Index Terms—Ovarian Tumor Segmentation; In-painting;
Marker Removal; OTU2D Dataset; ResNet50-UNet3+;

I. INTRODUCTION

Ovarian cancer progresses silently and is often diagnosed
at late stages, making it a leading cause of cancer death in
women. Previous studies show that if cancer is diagnosed early,
the five-year survival rate exceeds 90% [1]. Early detection and
accurate diagnosis of the tumors are crucial for timely treat-
ment, which can significantly improve patient outcomes and
maintain women’s health and fertility. Identifying the tumor
area can assist doctors in predicting and deciding appropriate
treatment methods, thereby improving the overall quality of
healthcare services.

Determining the tumor region of interest from ultrasound
images is often formulated as a segmentation task. Segmenta-
tion tasks in medical imaging often utilize CNNs with encoder-
decoder architectures to extract relevant features from images
[2], [3]. Typically, the input of these models is an ovarian
ultrasound image, and the output is a binary image in which
tumor areas are separated from non-tumor areas. However, the

complex nature of ultrasound images, with their inherent noise
and the symbols marked by sonographers, poses significant
challenges for ovarian tumor segmentation.

In our study, to overcome the challenges posed by noise
and symbols in ultrasound images, we utilized the LaMa in-
painting technique [4] as a pre-processing step. This approach
effectively eliminates artifacts such as sonographer markers,
measurement rulers, and patient details, enhancing the image
quality and facilitating more accurate segmentation when ap-
plied to deep learning models. Then a segmentation model that
couples the Resnet50 encoder with the architecture of UNet3+
is introduced. The results of our model on the OTU2D dataset
[5] demonstrate an improvement over the existing models with
the Dice, IoU, Recall, and Precision scores of 86.44%, 77.05%,
86.31%, and 89.18%. Moreover, when testing on a subset of
50 clean images, the pre-processing technique based on in-
painting helps to increase the Recall and Precision metrics
from 89.32% and 86.23% to 97.78% and 96.08%.

In summary, the contribution of the paper is two-fold. First,
we propose to apply an in-painting technique in the pre-
processing step to remove the unwanted markers and symbols
in ultrasound images. Second, a ovarian tumor method that
incorporates the ResNet50 encoder and the architecture of
Unet3+ with full-scale skip connections is proposed.

The structure of this paper is as follows: Section II provides
a brief review of existing in-painting techniques and ovarian
tumor segmentation methods. Section III describes the main
components of our proposed framework. The evaluation re-
sults are discussed in Section IV. Finally, Section V offers
discussions and conclusions.

II. RELATED WORK

Segmentation models have seen significant advancements
recently, with a notable increase in research outcomes. Ron-
neberger et al. introduced U-Net [6], which is a widely adopted
architecture for biomedical image segmentation. Its archi-
tecture includes a contracting path for capturing contextual
information and an expanding path for precise localization.
Skip connections between corresponding layers to preserve
fine details. U-Net excels at handling small datasets and
accurately segmenting medical images by capturing intricate
details and spatial context simultaneously.



Building upon [6], U-Net++, an extension of UNet, was
developed by Zhou et al. in [7]. UNet++ aims to improve
segmentation accuracy. It integrates nested and densely con-
nected pathways to capture hierarchical features across mul-
tiple scales. U-Net++ demonstrates enhanced performance by
leveraging nested skip pathways to refine segmentation bound-
aries and details. Additionally, U-Net3+ [8], incorporates at-
tention mechanisms and dense connectivity blocks to enhance
feature reuse and integration across scales. This architecture
achieves superior segmentation results by focusing on effective
feature aggregation and refinement at different hierarchy levels.

To enhance segmentation capabilities in ultrasound images,
in [9], a method named CR-Unet was proposed. CR-Unet
integrates a spatial recurrent neural network (RNN) with a
U-Net architecture, forming a composite network. CR-Unet
addresses several typical challenges of ultrasound images, such
as poor image quality, low contrast, and complex anatomical
shapes.

Recent studies have tried to enhance UNet by [6] not only
optimizing skip connections but also improving the encoder
branches. For instance, the study in [2] replaced the encoder
branch by MobileNetV2 to enhance feature extraction from
ultrasound images. This approach led to a significant increase
in the Dice coefficient to 79.00% on the OTU2D dataset [5].
It shows promising results in semantic segmentation tasks,
demonstrating the effectiveness of integrating advanced en-
coder architectures within the UNet framework. Additionally,
it highlights the potential of using more powerful architectures
to further enhance model performance.

Several studies focus on addressing noise in ultrasound im-
ages, such as patient details and markers. In [1], Coburn et al.
employed a CNN-CAE approach to diagnose ovarian tumors.
They initially faced challenges with misaligned activation areas
in their CNN model due to marks present in the images. By
incorporating a denoising convolutional autoencoder (CAE) to
remove these marks before training the CNN, they achieved
improved classification results. This adjustment enabled more
accurate alignment of activation areas with relevant regions in
the images, thereby facilitating more reliable tumor diagnosis.

In [10], Chen et al. focused on enhancing classification
and segmentation accuracy by addressing symbols and marks
in medical images using image in-painting techniques. They
introduced a framework called mask-guided generative adver-
sarial network (MGGAN) designed to remove these symbols.
MGGAN utilizes attention mechanisms to enhance the re-
alism of lesion boundaries, thereby improving segmentation
accuracy. Their approach significantly boosted segmentation
performance, increasing accuracy from 71.51% to 76.06% for
the Unet model and from 61.13% to 66.65% for the PSPnet
model when applied to clean images. These studies underscore
the importance of robust pre-processing techniques in medical
image analysis, demonstrating how advancements in image
cleaning and enhancement can lead to more accurate and
reliable AI-based diagnostic tools.

III. PROPOSED FRAMEWORK FOR OVARIAN TUMOR
SEGMENTATION

A. Overall framework

The main target of this study is to propose an effective
framework for the ovarian tumor segmentation task, illustrated
in Fig. 1. This framework consists of two crucial components
that are pre-processing and image segmentation steps. In fact,
ultrasound images usually contain inherent noise and symbols
marked by sonographers, leading to significant challenges
for segmentation tasks. Consequently, the purpose of the
preprocessing step is to eliminate noise and provide higher-
quality images for the subsequent segmentation step. For the
image segmentation task, we leverage the abilities of both
the ResNet50 [11] and U-Net3+ [6] models by replacing the
encoder of U-Net3+ with ResNet50 for the feature extrac-
tion step. The ResNet50 model enhances the segmentation
capability of U-Net3+, significantly improving both Precision
and Recall in the ovarian tumor segmentation problem. The
details of these two crucial steps are provided in the following
sections.

B. Symbol removing by in-painting technique

With the purpose of eliminating noise and providing higher
images for the segmentation step, in this study, we propose
to use the Large-Mask in-painting technique (LaMa) [4] in
the pre-processing step. The LaMa technique is performed
to remove and fill up large missing areas within a given
image; from this, the input images become clearer and sharper.
However, this process is time-consuming, particularly during
the labeling phase, where annotating noise markers in ovarian
ultrasound images. The Fast Fourier Convolution (FFC) block
is a key component in this model, designed to split channels
into local and global information branches in images. While
real FFT (Fast Fourier Transform) is utilized in the global
branch, enabling the model to take the entire image into
account when generating convolutions, it is applied to real-
valued signals, ensuring that the output remains real-valued.
A local branch utilizes conventional convolutions to process
information within specific regions of the image. By combin-
ing the outputs from their local and global branches, FFCs
effectively leverage both local details and global context for
accurate image in-painting. This approach provides an image-
wide receptive field, enabling the generator to integrate global
context from the initial layers, which is crucial for ensuring
the filled areas remain consistent with the overall structure and
appearance of the original image. The architecture of the LaMa
model is described in Fig. 2.

C. Ovarian Tumor Segmentation

The main contribution of the proposed framework is demon-
strated in the image segmentation component, where the
ResNet50 [11] model is incorporated with U-Net3+ to enhance
its segmentation capability. Fig.3 illustrates the modification
in the architecture of U-Net3+, with ResNet50 serving as
the encoder of the U-Net3+ model. By utilizing ResNet50
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Fig. 1. The proposed framework for ovarian tumor segmentation.

Fig. 2. Large Mask In-painting architecture.

as a pre-trained encoder, we leverage its ability to efficiently
extract meaningful features from input images, significantly
reducing both training time and computational demands com-
pared to building a model from scratch. This approach is
particularly advantageous because training from scratch can be
resource-intensive and expensive. By leveraging the pre-trained
ResNet50 encoder, we benefit from its proven performance
and robustness, thereby improving the overall effectiveness and
efficiency of the ovarian tumor segmentation task.

The decoder remains consistent with the original U-Net
architecture. Integrating the U-Net architecture with ResNet50
has proven to be highly effective for segmentation tasks
compared to the standard U-Net. The combination of U-Net
and ResNet50 leverages the power of both models: the detailed
spatial information captured by U-Net and the deep feature
extraction capability of ResNet50. This synergy enhances the
accuracy and efficiency of the segmentation process, making it
particularly suitable for complex medical imaging tasks such
as ovarian tumor detection and delineation. By maintaining the
foundational elements of U-Net while incorporating the ad-
vanced features of ResNet50, this approach not only improves
performance but also ensures that the segmentation process is
more reliable and precise.

Fig. 3. The segmentation method incorporating ResNet50 and U-Net3+
architecture.

D. Loss function

For this study, in our experiment, we employ Binary Cross
Entropy (BCE) [12], which is particularly suitable for binary
segmentation tasks. The BCE is defined as follows:

BCE(y, ŷ) = − (y log(ŷ) + (1− y) log(1− ŷ)) (1)

where y represents the ground truth area of the ovary in
ultrasound images, and ŷ denotes the region of the ovary
predicted by the model.
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IV. EXPERIMENTS AND RESULTS

A. Dataset

We utilized a benchmark dataset, OTU2D, which comprises
1469 ovarian ultrasound images collected from 294 patients
at Beijing Shijitan Hospital and Capital Medical University,
China [5]. However, in this study, we focus on binary seg-
mentation to identify the presence or absence of tumors. To
ensure a fair evaluation, we followed the split ratio protocol
8:1:1 images for training, testing, and validation, respectively.
Figure 4 illustrates several sample images from the OTU2D
dataset, showcasing the diverse types of tumors.

Fig. 4. Illustration of several ovarian tumor ultrasound images.

B. Experimental results

1) Qualitative evaluation of preprocessing step: Figure.5
illustrates some results of the preprocessing step. We can
observe that markers, symbols, and other annotations have
been removed. Although in some parts the contrast level is
decreased, we can still see the detailed information of different
parts of the ovarian area.

2) Ablation Study: To evaluate the role of each component
in the proposed method, in our study, we have conducted
three experiments. The first experiment aims to evaluate the
performance of UNet3+, while the second experiment tried to
assess the robustness of the encoder part. The final experiment
is to compare the BCE loss function with other loss functions.

Table I shows the results of the first experiment. Among
the three architectures that are UNet, UNet++, and UNet3+,
UNet3+ demonstrates the best performance when using skip
connections with Dice (84.6%), IoU (74.32%), and Recall
(87.42%). Although UNet3+ outperforms UNet++ and UNet
in terms of dice, IoU, and recall, UNet demonstrates higher
precision (86.43%) in predicting the pixels of the regions
belonging to ovarian tumors compared to UNet3+ (0.54%),
with precision lower by 0.54% compared with UNet. The
findings highlight a notable advantage when utilizing skip-
connections to interconnect layers within UNet3+, leading to
significantly superior performance compared to both UNet and
UNet++ architectures.

In the second experiment, we compare the performance of
three different encoders, which are VGG16, MobileNetV2,
and ResNet50. Results are shown in Tab. II. ResNet50 out-
performs VGG16 and MobileNetV2 in Dice (86.44%), IoU
(77.05%), and Recall (89.18%), highlighting its effectiveness

TABLE I
COMPARISON OF UNET, UNET++ AND UNET3+ BACKBONES FOR OVARIAN

TUMOR SEGMENTATION. BEST RESULTS ARE IN BOLD (%).

Model Dice IoU Recall Precision
UNet [6] 81.02 69.44 83.76 86.43
UNet++ [7] 73.68 59.34 79.07 82.55
UNet3+ [8] 84.62 74.32 87.42 85.89

for high-quality segmentation. VGG16 has the highest Recall
(88.11%) but is missing many important information. Fig. 6
shows results from different backbones, demonstrating that the
proposed method closely matches the ground truth.

TABLE II
COMPARISON OF ENCODERS WHEN INCORPORATING WITH UNET3+

ARCHITECTURE. BEST RESULTS ARE IN BOLD (%).

Model Dice IoU Recall Precision
MobileNetV2 + UNet3+ 77.74 64.52 78.32 82.08
VGG16-Net + UNet3+ 85.36 75.74 88.11 87.15
ResNet-50 + UNet3+ 86.44 77.05 86.31 89.18

Loss function is also important in the segmentation model.
Our third experiment aims at assessing the performance of
loss functions. In the literature, there are several loss functions
proposed for ovarian tumor segmentation. Table III highlights
a comparison of the performance of various loss functions.
The proposed method utilizing BCE loss stands out with Dice
(86.44%) and IoU (77.05%), reflecting the effectiveness of the
proposed model with BCE. In comparison, Dice loss performs
well but is slightly lower than that achieved with BCE loss.
IoU Loss shows the highest recall (89.29%) but a low precision
(85.51%), indicating that it misses many important regions
within the ovarian tumor region. Focal loss excels in precision
(90.90%) but low recall (83.24%) and IoU (70.17%) show
that it misses many other important regions that we need
to segment. The Hybrid loss [2] and Joint loss [3] methods
provide a balanced performance but do not surpass BCE loss
in any metric. These results in Fig. 7 suggest that BCE loss is
the most effective for our proposed method, achieving a good
balance between precision and recall while maintaining high
accuracy.

TABLE III
COMPARISON OF LOSS FUNCTIONS. BEST RESULTS ARE IN BOLD (%).

Loss Dice IoU Recall Precision
BCE 86.44 77.05 86.31 89.18

Dice [13] 85.70 76.11 84.83 88.97
IoU [14] 86.14 76.61 89.29 85.51

Focal [15] 81.71 70.17 83.24 90.90
Hybrid [2] 85.67 75.89 83.97 89.89
Joint [3] 85.03 75.19 84.85 88.90

3) Comparison with the state-of-the-art methods: Table IV
compares the segmentation results of the proposed method
with the state-of-the-art methods on the OTU2D dataset.
We can observe that the proposed method using BCE Loss
achieves better performance than MU-Net [2].
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Fig. 5. Example of ultrasound images before an after preprocessing step in the OTU2D dataset. The first row shows the ultrasound images with markers
highlighted by bounding boxes, while the second row shows the preprocessed images where markers and symbols are removed.

Fig. 6. Example of segmentation results from difference models. Results of
the proposed result are highlighted in a red rectangle.

Fig. 7. Example of segmentation results from difference metrics loss. Results
of the proposed method are highlighted in a red rectangle.

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON OTU2D

DATASET (%)

Model Loss Dice IoU Recall Precision
MU-Net [2] BCE 56.70 39.80 77.20 82.70
MU-Net [2] Hybrid 79.00 65.00 80.00 82.00

Proposed Method BCE 86.44 77.05 86.31 89.18

To evaluate the effect of marker removal, 50 clean images
from the OUT2D dataset were used. Two scenarios are defined
using 1419 marker images for training. In the first scenario
(without preprocessing), we employ the original images, while
in the second scenario (with preprocessing), output images of
LaMa models are utilized. Experimental results are reported in
Tab. V. The results confirm the impact of symbol and marker
removal in the preprocessing step, with the values of Dice, IoU,
Recall, and Precision metrics being 96.6%, 93.57%, 97.78%,
and 96.08%, respectively. Fig.8 illustrates some segmentation
results.

TABLE V
COMPARISON RESULTS OF USING THE PROPOSED METHOD OF TESTING ON

THE CLEAN IMAGES SUBSET IN THE OTU2D DATASET (%)

Scenario Dice IoU Recall Precision
Without preprocessing 90.63 83.02 89.32 86.23

With preprocessing 96.64 93.57 97.78 96.08

V. CONCLUSIONS AND FUTURE WORKS

In this study, we have proposed an effective framework for
ovarian tumor segmentation by incorporating a pre-processing
step and a segmentation network based on ResNet50 and U-
Net3+. Several experiments were conducted on a benchmark
dataset, demonstrating significant improvements, with the Dice
Coefficient getting 86.64% on the OTU2D dataset and increas-
ing from 90.63% to 96.64% when using the LaMa in-painting
technique. Compared to previous studies, which often focus
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Fig. 8. Example of segmentation results with and without preprocessing step.
Results with preprocessing step are highlighted in a red rectangle.

on enhancing segmentation performance without addressing
the impact of annotations and noise, our work offers a more
comprehensive approach by combining pre-processing with
segmentation techniques. Our study contributes to the field
by addressing this challenge, thus improving the performance
of the segmentation tasks. However, despite the notable per-
formance, our model still has limitations in the boundary.
The future work will focus on refining these boundaries
and leveraging the segmented regions to compute clinically
relevant parameters, such as orthogonal diameters or boundary
features.
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