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Abstract—Semiconductors are essential components of modern
technology, and inspecting their defects has become increasingly
important. One popular approach is to inspect them using X-ray
images, but the release of semiconductor images to the public is
restricted due to security concerns. This limited dataset poses a
challenge, particularly when developing learning-based inspection
methods. Another problem with X-ray images is the noise and
low resolution, which lowers the inspection accuracy of machine
and human inspectors. To overcome this challenge, we introduce a
new public semiconductor dataset and propose a new X-ray image
enhancement framework to help inspectors increase inspection
accuracy. Precisely, we have collected a new dataset consisting
of three types of X-ray images obtained from actual industrial
settings. Additionally, our enhancement method can improve all
types of images without the need to train a separate model for
each type. This is achieved by analyzing the noise within the
dataset and building on previous studies, and using objective
functions defined in the frequency domain. Various experiments
and ablation studies have shown that our method can significantly
improve X-ray semiconductor images, both qualitatively and
quantitatively. Our proposed semiconductor dataset is publicly
available at this URL: https://drive.google.com/drive/folders/1
YSuxR YGNah1mnPGNd-pgrRULNZP5gn?usp=sharing.

Index Terms—Image Enhancement, Semiconductor, X-ray
Imaging, Image Denoising, Image Super Resolution

I. INTRODUCTION

Semiconductors are important components used in various
products and manufacturing machines today. They are also
critical parts of machines where safety is a top priority, such
as unmanned vehicles. Therefore, accurately detecting defects
in semiconductors is becoming increasingly important, and
improving the speed and accuracy of defect inspection is a
critical objective in the semiconductor industry.

One popular semiconductor inspection method is to identify
defects through X-ray imaging [1]–[4]. In general, the preci-
sion of semiconductor inspection is largely dependent on the
quality of X-ray images, where two key factors that affect
the image quality are the energy level and exposure time [5].
Although higher energy levels and longer exposure times can
enhance the image quality, they can also have negative effects.

Precisely, it is required to have a delicate balance between
image clarity and potential damage to the semiconductor
circuits and other structures. While higher energy levels result

in clearer images, excessive energy can harm the semicon-
ductors. Therefore, it is crucial to limit the energy level to
avoid damage. In addition, the exposure time should be long
enough to produce clean images with minimal noise from the
equipment. However, a long exposure time can also reduce
semiconductor yields. Hence, to obtain high-quality images
without harming the semiconductors, short exposure time with
limited X-ray energy is necessary. But this can negatively
impact the accuracy of both human and machine inspectors.

Therefore, in this paper, we present a new semiconductor
image dataset and a deep-learning approach to improve the
quality of X-ray images captured with various energy levels
and exposure times. Since most semiconductor images are
intended for industrial purposes, their public release is strictly
prohibited. This restriction has resulted in a scarcity of datasets
containing semiconductor X-ray images, which in turn has
hindered the advancement of image processing technologies
related to semiconductors. As demonstrated in Figure 1, our
dataset includes three types of semiconductor images captured
under various equipment and conditions, and we expect that
the dataset can help the academic community overcome the
research limitation.

Furthermore, based on prior research [6] and our observation
of commonalities in the noise distribution across them, we
suggest an integrated framework to enhance input images,
instead of training separate networks for each type. Our
framework consists of two modules: a denoising module
and a super-resolution module. Initially, to reduce noise, we
employ downsampling in the spatial domain using an encoder.
Subsequently, due to the importance of preserving essential
details like circuit and bump boundaries on semiconductor
wafers, we adopt the architecture proposed in Soh et al. [7]. In
addition to the spatial domain loss, we incorporate frequency-
domain functions, Focal Frequency Loss [8] and Wavelet-
domain High-Frequency Loss [9], which are shown to keep
high-frequency components. As a result, our method shows
significant improvements in both qualitative and quantitative
ways.

Our contributions can be summarized as follows :
• We have proposed a new semiconductor X-ray image
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Fig. 1. Overview of our proposed dataset. The dataset consists of three
types of data, each having a different resolution (S1 ∈ R1024×1024, S2 ∈
R1936×1536, S3 ∈ R1900×1900). Low-Quality images have significant noise
due to short-duration X-ray exposure, while High-Quality ones have less noise
as they are projected over a comparatively longer duration.

dataset that comprises three types of images captured under
different equipment and conditions. The aim of this dataset is
to facilitate research in the academic community, particularly
learning-based X-ray image processing research.

• We have demonstrated that there are common statistical
characteristics among the types of data. Based on the analysis,
we designed an integrated framework capable of improving all
three types at once.

• Through experiments and ablation studies, we have val-
idated that our approach makes a significant improvement in
both qualitative and quantitative results.

II. METHOD

A. Novel Semiconductor Dataset

We propose a novel semiconductor X-ray image dataset. As
depicted in Figure 1, to provide diversities, our dataset includes
three distinct types of images, depending on the filming
equipment and environment. These are denoted as S1, S2, and
S3. Each type comprises pairs of Low Quality (LQ) and High
Quality (HQ) images. LQ images are captured by subjecting
semiconductor wafers to a brief X-ray exposure (5 seconds),
resulting in images with significant noise. Meanwhile, HQ
images are produced by a longer X-ray exposure (90 seconds),
yielding images with considerably less noise. There are 2135
images in S1, 2000 in S2 and 1040 in S3 dataset, and we have
partitioned each data type into train and test datasets. For S1
and S3, the proportion between training and test datasets is
80:20, while it is 90:10 for S2.

Fig. 2. To investigate the noise characteristics added to Low Quality (LQ)
images compared to High Quality (HQ) ones, we plot histograms of the pixel
values obtained by subtracting LQ from HQ, using 100 training pairs from
each data type. Across all three data types, the shapes of histograms are similar
to Gaussian.

B. Theoretical Background for the Framework

1) Noise Analysis in Dataset: In order to examine the nature
of noise in LQ images relative to HQ ones, we compute the
differences between corresponding pairs and analyze the pixel
histogram for each type of data. As shown in Figure 2, we
find that the additional noise present in LQ images across all
types (S1, S2, and S3) can be approximated by a Gaussian
distribution and exhibits a mathematically similar form. There
have been many studies [6], [10], [11] for handling Gaussian
noise of various standard deviations using a single model. This
research provides the theoretical foundation for our integrated
model.

2) Noise2Noise: Noise2Noise [6] suggested that it is pos-
sible to train the network to produce clean data solely with
the use of noisy image pairs. They demonstrated that if the
noise expectation is zero, the model can learn to approximate
the clean ground truth despite each gradient aligning with the
noisy data. The optimization task can be formulated as:

argminθ

∑
i

L(fθ(X̂i), Ŷi) where Ŷi = Yi + ni. (1)

In this context, θ represents the trainable parameters of the
model, and the pair (X̂i, Ŷi) denotes a set of noisy training
images. Note that Yi and ni indicate the clean data and noise,
respectively. Under the assumption that the noise has a zero
mean, such as Gaussian noise, the network’s parameters are
optimized to generate an unobserved clean target as:

E[Ŷi|X̂i] = Yi (2)

especially when the L2 loss is utilized. Furthermore, employ-
ing the L1 loss eliminates outliers, which similarly guides the
network’s training process, resulting in less blur in the output
images.

Our goal is to convert data with noise caused by brief X-
ray exposure times into clean data. However, obtaining clean
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Fig. 3. Overall structure of the proposed framework. The LQ image, targeted for enhancement, initially goes through the Denoising Module. This process
results in the denoised feature where unnecessary information like noise is eliminated. However, it retains sufficient information for the Super-Resolution Module
in the feature (z >> c in Equation 3). Then, the feature undergoes the Super-Resolution Module to produce an Enhanced-Quality image. Utilizing Enhanced
Quality and HQ images, the final objective function (Equation 4) is calculated to train our framework.

semiconductor X-ray images theoretically needs infinite X-ray
exposure time, which is physically unfeasible. Thus, inspired
by Noise2Noise research, we intend to project input data
onto the manifold of clean data using pairs of noisy images,
involving more noisy images (Low Quality, LQ) and less noisy
ones (High Quality, HQ).

C. Framework

The primary objective of our framework is to enhance
LQ images to achieve clarity comparable to HQ ones while
eliminating noise. Hence, our framework consists of two
key modules: the denoising module and the super-resolution
module, as illustrated in Figure 3.

Traditional techniques for noise reduction involve low-pass
filters and bicubic downsampling. However, with the advance-
ment of deep learning, it has been proven that an end-to-end
trained network outperforms these traditional methods in de-
noising task [12]–[16]. Especially, the downsampling process
within such networks is critical for removing high-frequency
bands that contain noise components [17]. Consequently, we
incorporate an encoder network with downsampling in the
denoising module to effectively filter out high-frequency noise
from LQ images.

To ensure semiconductor images perform optimally in post-
processing stages, such as anomaly detection, it is important
not only to eliminate noises but also to improve image clarity.
However, in the spatially compressed feature obtained through
downsampling via an encoder, there is a lack of high-frequency
information, which is related to the image detail. Hence, when
enlarging the spatial size of the embedding feature to match
the original image, we utilize a network designed for the
Super-Resolution (SR) task. Within our framework, we adopt
the fractal residual learning (FRL) architecture proposed in
NatSR [7]. Although NatSR uses a discriminator to determine
if the input patch lies on the natural manifold, we only utilize
the SR network for processing semiconductor X-ray images
because the discriminator’s role is not proper in our task.

The above series of processes can be written as the following
equation:

ŷ = D(f) = D(E(x)), (3)

where x ∈ Rh×w×c and ŷ ∈ Rh×w×c indicate LQ and
Enhanced Quality (EQ) image. Additionally, f ∈ Rh/4×w/4×z

represents the denoised feature, which is the most spatially
compressed element within our framework. E and D denote
the denoising and the SR module, respectively. Note that in
contrast to Singh et al. [18], we assign a larger value to z in f
than to c in x. This assignment allows us to incorporate more
information into f , which is essential for the SR module to
effectively restore image details.

D. Objective Function

To train the network in the spatial domain, we utilize a
distortion-oriented loss function. We refrain from adopting
losses associated with the discriminator, as our goal is to
produce the unobserved clean data manifold. Furthermore,
since this field does not involve human visual perception and
aesthetic appreciation, the use of any perceptual loss is deemed
less relevant.

To improve the clarity of semiconductor lines and bump
boundaries in images, we incorporate two losses defined in
the frequency domain. First, we utilize Focal Frequency Loss
(FFL) [8], suggested to narrow the frequency gap between
EQ and HQ images. This method converts each image to the
frequency domain via the Discrete Fourier Transform (DFT)
and then calculates the Euclidean distance and associated
weight at each spectral position. Nevertheless, these weights
are proportional to the scale of the frequency band, assigning
the low-frequency band with larger weights. To emphasize
the high-frequency band, we also employ Wavelet-domain
High-Frequency Loss (WHFL) [9]. This approach ensures
that weights increase with frequency, effectively highlighting
higher frequencies.

As a result, our final objective function for training the
network can be written as:

L(y, ŷ) = |y − ŷ|11 + λ1 · LFFL(y, ŷ) + λ2 · LWHFL(y, ŷ),
(4)

where y and ŷ denote HQ and EQ images, respectively. Also,
λ1, λ2 are hyper-parameters balancing among each loss term.

3



(a) HQ whole image (b) LQ (c) HQ (d) 𝐷𝑆1× (e) 𝐷𝑆2× (f) 𝐷𝑆4×

Fig. 4. Comparison of results among original Low Quality (LQ), High Quality (HQ) images and super-resolved images according to downsampling scale
(DSn×). DS1× means that the input is not downsampled at all. DS2× and DS4× indicate that the input goes through 2× and 4× downsampling, respectively.

TABLE I
EXPERIMENTAL RESULTS ON DIFFERENT SETTINGS FOR THREE DATA TYPES: S1, S2, AND S3. THE EXPERIMENTS COVER VARIOUS SETTINGS, INCLUDING
“BICUBIC” (APPLYING BICUBIC DOWNSAMPLING TO THE INPUT), “DM” (DENOISING MODULE), “FFL”, AND “WHFL”. PERFORMANCE RANKINGS ARE

INDICATED WITH RED DENOTING THE HIGHEST, AND BLUE INDICATING THE SECOND-HIGHEST PERFORMANCE FOR EACH DATA TYPE. NUMBERS IN
PARENTHESES REPRESENT THE PERFORMANCE INCREASE COMPARED TO LQ IMAGES.

Setting DM FFL WHFL Data type PSNR Average PSNR SSIM Average SSIM
S1 34.91(+3.22) 0.9264(+0.2218)

bicubic ✗ ✗ ✗ S2 33.76(+5.63) 34.39(+6.39) 0.8603(+0.1895) 0.8996(+0.3373)
S3 33.94(+13.62) 0.8824(+0.7158)
S1 37.20(+5.52) 0.9296(+0.2250)

bicubic + FFL ✗ ✓ ✗ S2 33.79(+5.67) 35.60(+7.60) 0.8600(+0.1893) 0.9010(+0.3387)
S3 34.04(+13.71) 0.8819(+0.7154)
S1 35.29(+3.60) 0.9310(+0.2263)

DM + FFL ✓ ✓ ✗ S2 33.97(+5.84) 34.80(+6.80) 0.8659(+0.1952) 0.9036(+0.3413)
S3 34.62(+14.29) 0.8838(+0.7172)
S1 35.34(+3.65) 0.9324(+0.2278)

DM + FFL + WHFL ✓ ✓ ✓ S2 33.91(+5.78) 34.83(+6.83) 0.8662(+0.1955) 0.9048(+0.3424)
S3 34.68(+14.36) 0.8851(+0.7186)

III. EXPERIMENT

A. Experimental Settings

We conduct experiments to compare four different settings
across three data types: S1, S2, and S3, using PSNR and
SSIM as evaluation metrics. In the “bicubic” setting, we apply
bicubic downsampling to the input image and perform super-
resolution to obtain the resulting image, employing the L1 loss
as the loss function. In the “bicubic + FFL” setting, the network
architecture remains the same, but we adopt FFL in addition
to the L1 loss. In the “DM + FFL” setting, we replace bicubic
downsampling with the denoising module. Lastly, in the “DM
+ FFL + WHFL” setting, we combine both FFL and WHFL
with the L1 loss.

B. Experimental Results

Table I presents the PSNR and SSIM results for the four
settings. Our proposed framework, “DM + FFL + WHFL,”
exhibits the best performance across all data types in terms of
SSIM. It achieves the second-highest PSNR results in S1 and
S2 data types and the highest PSNR in S3. While “bicubic
+ FFL” demonstrates the highest average PSNR value, this is
primarily attributed to the high PSNR value in S1. However,
a detailed analysis reveals that each component we introduced

(denoising module, FFL, and WHFL) effectively enhances
both PSNR and SSIM. Note that we set the SR module as the
learning-based method [7] because the module is an essential
component for upsampling the downsized intermediate results
back to the original image size, excluding the component from
this analysis.

Firstly, comparing “bicubic” and “bicubic + FFL,” we ob-
serve improvements across all aspects, especially a significant
increase in PSNR for S1. This suggests that FFL can compen-
sate for the L1 loss for improving the quality of result images.

Secondly, “DM + FFL” enhances most metrics across nearly
all data types when compared to “bicubic + FFL.” Notably,
“DM + FFL” employs a deeper feature, rather than a down-
sampled image, as an intermediate feature. This approach more
effectively preserves the information necessary for restoring
image details. Although increasing the channel dimension of
the feature may adversely affect the performance in PSNR of
S1, it improves overall performance including SSIM in S1.
Hence, replacing “bicubic” with “DM” enhances the results.

As mentioned, the “DM + FFL + WHFL” setting, which
incorporates WHFL into “DM + FFL”, demonstrates superior
performance. While maintaining PSNR values in S2, WHFL
enhances all other metrics across every data type in comparison
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Fig. 5. Comparison among the original LQ, HQ images, and results from existing methods and ours for every data type (S1, S2, S3). Each row corresponds to
each data type, and each column indicates an image category. Columns (d) and (e) show the results from EDCNN [19] and NAFNet [20], respectively. Column
(f) displays the results of our full framework.

to “DM + FFL”. As a result, given that SSIM is based on
structural information, we can conclude that both FFL and
WHFL significantly contribute to enhancing the quality of X-
ray images for semiconductors.

C. Effects of Downsampling

We adopt downsampling as a preprocessing step for input
images to eliminate noise and other unnecessary elements
before proceeding to the SR module. Therefore, to investigate
the effect of downsampling, we conduct an ablation study. In
this section, we employ bicubic downsampling to the Low-
Quality (LQ) input and subsequently super-resolve it using our
deep network.

Figure 4 illustrates the results of applying 1× (indicating
no downsampling), 2×, and 4× downsampling to the S1-
type image. The image downsampled at 4× shows better line
preservation and more efficient noise removal compared to the
1× and 2× downsampled images, leading to clearer patterns.
Despite the noise in the HQ image, downsampling contributes
to obtaining an image cleaner than the HQ image.

Based on the above observation, we conclude that the
downsampling process effectively eliminates unnecessary in-
formation, such as noise and stain-like artifacts, while preserv-
ing essential features like lines and curves. Thus, we design
our framework by combining a denoising module for the
downsampling process and the SR model to improve image
quality, akin to an autoencoder.

D. Comparison to Existing Denoising Methods
We conduct a comparative analysis of our method against

established denoising techniques. NAFNet [20] demonstrates
exceptional performance in real-world image denoising, while
EDCNN [19] works effectively in the context of CT image
denoising, particularly in the medical image domain. We have
re-trained both NAFNet and EDCNN on our dataset.

As illustrated in the qualitative results of Figure 5, the im-
ages denoised with EDCNN exhibit both blurriness and noise.
Meanwhile, NAFNet achieves clearer results than EDCNN,
but the residual noise artifacts still remain. Notably, more
pronounced noise patterns are seen in the results of S2 and S3
data types. In contrast, our method produces clean denoised
images with significantly reduced noise artifacts compared
to other denoising methods. With our framework, images
can be structurally reinforced, enhancing defect inspection
capabilities.

IV. CONCLUSION

We have introduced a new dataset and a deep learning
framework to improve the quality of semiconductor X-ray
images. The dataset includes X-ray images taken at various
energy levels and exposure times. In our deep learning frame-
work, the input image is first passed through a denoising net-
work that downsamples the image while preserving important
information by expanding the feature’s dimensionality. The
feature is then processed by a super-resolution network. To

5



train the network, we combined pixel and frequency-domain
functions to form a loss function. Our proposed architecture
and these functions work together to enhance the quality of the
output image, outperforming one of the leading deep networks
in the field of real image denoising. We believe that our dataset
and framework will contribute to the advancement of X-ray
image processing for semiconductors and other areas.
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